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•  A	
  Communica6ons	
  Perspec6ve	
  on	
  Data	
  Fusion	
  
–  mul6-­‐user	
  informa6on	
  theory	
  

•  Data	
  Fusion	
  for	
  Detec6on	
  &	
  Es6ma6on	
  
–  scan	
  sta6s6cs	
  for	
  sensor	
  networks	
  
–  consensus	
  in	
  sensor	
  networks	
  
–  data	
  fusion	
  with	
  intermi,ent	
  detec6ons	
  
–  quan6zed	
  es6ma6on:	
  a	
  note	
  
–  decentralized	
  learning	
  
–  decentralized	
  es6ma6on	
  with	
  MOU	
  

•  Data	
  Fusion	
  for	
  Tracking	
  
–  architectures	
  
–  bias	
  
–  track	
  fusion	
  

•  Mapping	
  a	
  “SoN”	
  Problem	
  to	
  “Hard”	
  Terms	
  
–  an	
  example	
  

Outline	
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•  What	
  are	
  the	
  bounds?	
  
•  Basic	
  IT	
  mo6vated	
  by	
  “typicality”	
  

–  Source	
  coding,	
  channel	
  capacity,	
  rate-­‐distor6on	
  theory	
  
•  Capacity	
  for	
  networks	
  

– Mul6-­‐Access	
  Channel	
  (MAC)	
  
–  Broadcast	
  Channel	
  
–  General	
  Networks	
  

•  Distributed	
  Coding	
  
–  Noisy	
  and	
  Noiseless	
  

•  Distributed	
  Inference	
  (CEO	
  Problem)	
  

Mul6-­‐Sensor	
  Informa6on	
  Theory	
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•  Consider	
  a	
  discrete	
  iid	
  source	
  {Xi}	
  with	
  probabili6es	
  pj=Pr(Xi=xj)	
  
•  Suppose	
  we	
  have	
  Xn={X1,X2,	
  …	
  ,	
  Xn}	
  

–  On	
  average	
  there	
  will	
  be	
  np1	
  x1’s,	
  np2	
  x2’s,	
  etc.:	
  Pr(“ABBA”)=pA2pB2	
  
–  then	
  

	
  
	
  
	
  
	
  

•  Typical	
  Xn	
  is	
  one	
  for	
  which	
  
	
  
	
  
	
  
–  LLN	
  says	
  probability	
  that	
  Xn	
  is	
  typical	
  is	
  1-­‐ε,	
  small	
  ε as	
  you	
  like	
  
–  “Only	
  typical	
  X’s	
  ever	
  happen.”	
  
–  Typical	
  set	
  has	
  2nH(X)	
  elements,	
  each	
  with	
  probability	
  2-­‐nH(X)	
  

Pr(Xn ) ≈ pj
npj

j=1

m

∏ = 2
n pj log pj( )
j=1

n

∑
= 2−nH (X ) where H (X) = pj log 1/ pj( )

j=1

n

∑

H (X)−ε ≤ −1
n
log p(Xn )( ) = −1n log p(Xi )( )

i=1

n

∑ ≤ H (X)+ε
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Entropy	
  
•  Source	
  coding	
  scheme:	
  

	
  
	
  
	
  
	
  
	
  

	
  
•  Code	
  length	
  per	
  source	
  symbol	
  is	
  	
  

typical
? 

code as “0” + n× (H(X)+ε) bits 

code as “1” + n×log(|X|) bits 

X 

L = 1
n
(1−ε) 1+ nH (X)+ nε( )"# $%+ε 1+ nm( ) ≈ H (X)

Y 

N 
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Informa6on	
  
•  Information is I(X;Y) = H(X)-H(X|Y) 
•  Communication channel: 

data 
source 

code by 
picking 
an Xn 

Xn: n symbols of X Yn: n symbols of Y 

atypical Xn 

typical Xn 

2nH(X) 

atypical Yn jointly typical pairs, 2nH(X,Y) 

choose these 
randomly,  
according to p(x) 

typical Yn 

2nH(Y) 
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•  number	
  of	
  typical	
  Xn’s:	
  2nH(X)	
  

•  number	
  of	
  typical	
  Yn’s:	
  2nH(Y)	
  
•  number	
  of	
  jointly-­‐typical	
  (Xn,Yn)	
  pairs:	
  2nH(X,Y)	
  

•  code	
  procedure:	
  
–  look	
  at	
  our	
  Yn,	
  and	
  if	
  jointly-­‐typical	
  with	
  

exactly	
  one	
  Xn,	
  then	
  we	
  decode	
  to	
  that,	
  
otherwise	
  error	
  

•  but	
  Xn	
  each	
  is	
  joined	
  to	
  2n(H(X,Y)-­‐H(Y))	
  Yn’s	
  
•  so	
  use	
  only	
  a	
  frac6on	
  2n(H(Y)-­‐H(X,Y))	
  of	
  the	
  2nH(X)	
  

available	
  Xn	
  codewords	
  
•  then	
  we	
  have	
  leN	
  2nH(X)2n(H(Y)-­‐H(X,Y))	
  =	
  2nI(X;Y)	
  

typical	
  Xn	
  codewords	
  leN	
  
•  I(X;Y)=H(X)+H(Y)-­‐H(X,Y)	
  	
  defines	
  the	
  rate	
  we	
  can	
  

send	
  data	
  
•  this	
  informa6on	
  is	
  the	
  “capacity”	
  
	
  

Xn Yn 
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Capacity	
  
•  capacity:	
  C=maxp(x){I(X;Y)}	
  

–  means	
  that	
  you	
  choose	
  a	
  code	
  to	
  match	
  the	
  channel	
  
•  in	
  the	
  Gaussian	
  case	
  

	
   	
  C=B*log(1+P/N0B)	
  
where	
  B	
  is	
  the	
  bandwidth	
  and	
  P	
  is	
  the	
  transmi,ed	
  power	
  

•  parallel	
  coopera4ve	
  Gaussian	
  channels:	
  water-­‐filling	
  

noise 
level 
per 
channel 

power used 
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Mul6-­‐Access	
  Channel	
  (MAC)	
  
W1 X1 

X2 

Xm 

p(Y|X1,X2, … Xm) Y 

( ) SSXYSXISR c ∀≤ )(|);()(

where	
  
•  S	
  is	
  a	
  subset	
  of	
  the	
  users	
  {1,2,	
  …	
  ,m}	
  and	
  Sc	
  is	
  its	
  complement	
  
•  R(S)	
  is	
  the	
  sum	
  of	
  the	
  rates	
  of	
  the	
  users	
  in	
  S	
  
•  the	
  informa6on	
  uses	
  a	
  product	
  (independent)	
  distribu6on	
  of	
  X(S)	
  
•  this	
  is	
  exact	
  region,	
  not	
  a	
  bound	
  on	
  the	
  region	
  

W2 

Wm 

messages (W1,W2, … Wm) 
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MAC	
  Region	
  for	
  Two	
  Users	
  

);,(
)|;(
)|;(

2121

122

211

YXXIRR
XYXIR
XYXIR

≤+

≤

≤

R1 

R2 

B 

A 

•  source	
  2	
  starts	
  at	
  R2~0	
  
-  source	
  2	
  is	
  easy	
  to	
  decode,	
  so	
  X2	
  

is	
  known	
  
-  then	
  source	
  1	
  can	
  transmit	
  at	
  

A=I(X1;Y|X2)	
  
•  now	
  source	
  2	
  increases	
  its	
  rate	
  up	
  to	
  B	
  

-  source	
  2	
  can	
  s6ll	
  be	
  decoded	
  
(first)	
  while	
  R2<I(X2;Y)	
  

-  up	
  to	
  that	
  point	
  X1	
  is	
  just	
  “noise”	
  

( )

);(
)|()(

),|()|(),|()(
)|;();,(

);,(

2

2

21221

2121
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XYHYH
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Gaussian	
  MAC	
  

⎟
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R1	
  

R2	
  
CDMA	
  

TDMA	
  

FDMA	
  
R1 ≤

α
2
log 1+ P1

αN
"

#
$

%

&
'

R2 ≤
(1−α)
2

log 1+ P2
(1−α)N

"

#
$

%

&
'

0 ≤α ≤1

frequency	
  division	
  
mul6-­‐access	
  is	
  	
  
actually	
  not	
  so	
  bad	
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Broadcast	
  Channel	
  

•  exact	
  bound	
  not	
  known	
  in	
  general,	
  but	
  “degraded	
  broadcast	
  channel”	
  is:	
  

X1 

X2 

Xm 

p(Y1,Y2, … Ym) X 

W1 

W2 

Wm 

W1 

W2 

Wm 

X Y1 Y2 U 

W1 W2 

•  if Y2 can decode W2, so can Y1: R2<I(U;Y2)<I(U;Y1) 

•  then R2<I(U;Y2)<I(U;Y1), so U is known at Y1 

•  if U is demodulated, then R1<I(X;Y1|U) 
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General	
  Networks	
  

S Sc 

cut-set line 

( ))(|)();(
,

cc

SjSi
ji SXSYSXIR

c

≤∑
∈∈

→

This	
  is	
  an	
  “outer	
  bound,”	
  not	
  in	
  general	
  6ght	
  for	
  achievable	
  region.	
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The	
  Slepian-­‐Wolf	
  Problem	
  
•  distributed	
  noiseless	
  source	
  coding	
  [1973]	
  

–  for	
  dependent	
  sources	
  
–  one	
  source	
  can	
  help	
  the	
  other	
  reduce	
  its	
  rate	
  

R2 

R1 

H(X1) 

H(X2|X1) 

H(X1|X2) 

H(X2) 

•  clearly	
  R1>H(X1)	
  &	
  R2>H(X2|X1)	
  
•  clearly	
  R2>H(X2)	
  &	
  R1>H(X1|X2)	
  
•  triangular	
  region	
  is	
  filled	
  in	
  by	
  

6me-­‐sharing	
  
•  R1+R2>H(X1,X2)	
  

X1 

X2 

coder 

coder 
(X1,X2) decode 
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Distributed	
  Inference:	
  The	
  CEO	
  Problem	
  
•  Berger,	
  Zhang	
  &	
  Viswanathan	
  [1996]	
  
•  Viswanathan	
  &	
  Berger	
  [1997]	
  
•  Oohama	
  [1998]	
  
•  Zamir	
  &	
  Berger	
  [1999]	
  
•  Chen,	
  Zhang,	
  Berger	
  &	
  Wicker	
  [2004]	
  
•  Prabhakaran,	
  Tse	
  &	
  Ramchandran	
  [2004]	
  

θ	



ν1	
  

coder	
  

ν2	
  

coder	
  

νm	
  

coder	
  

X1	
  

X2	
  

Xm	
  

es6mate	
  θ	



R1	
  

R2	
  

Rm	
  

• everything	
  is	
  
Gaussian	
  

• everything	
  is	
  
independent	
  

• we	
  have	
  an	
  MSE	
  
criterion	
  on	
  q	
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⎟
⎟
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⎞
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⎡

+−
= +

2222

22

log
2
1)(

σσσσ
σσ

θθ

θθ

DND
ND

D
DR

•  there	
  are	
  vector	
  versions	
  of	
  this	
  
•  there	
  are	
  “successive	
  refinement”	
  versions	
  of	
  this	
  

–  I	
  have	
  not	
  seen	
  a	
  Kalman	
  filter	
  involved	
  
•  I	
  am	
  not	
  aware	
  of	
  a	
  data-­‐associa6on	
  version	
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•  Scan	
  sta6s6cs	
  for	
  sensor	
  networks	
  
•  Consensus	
  in	
  sensor	
  networks	
  
•  Data	
  fusion	
  with	
  intermi,ent	
  detec6ons	
  
•  Quan6zed	
  es6ma6on:	
  a	
  note	
  
•  Decentralized	
  learning	
  
•  Decentralized	
  es6ma6on	
  with	
  MOU	
  

Data	
  Fusion	
  for	
  Decision-­‐Making	
  
and	
  Es6ma6on:	
  Some	
  Topics	
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•  Barrier	
  sensor	
  network:	
  a	
  narrow	
  but	
  long	
  sensor	
  
band	
  along	
  coastline.	
  
–  How	
  to	
  effec6vely	
  fuse	
  the	
  binary	
  local	
  decisions	
  in	
  the	
  
fusion	
  center?	
  

•  Angle	
  dependent	
  reflec6on	
  
–  Only	
  a	
  small	
  area	
  of	
  sensors	
  can	
  reliably	
  detect	
  	
  

Scan	
  Sta6s6cs	
  for	
  Sensor	
  Networks	
  Barrier Sensor Networks Based Surveillance

source 

target 

detectable zone 

sensor field 

▶ Barrier sensor network:
a narrow but long sensor band along certain coastline

▶ System workflow:

local observation local binary decision 

local processing 

fusion center 

▶ Our concentration:
How to effectively fuse the binary local decisions in
the fusion center?

4 / 17

-  Song, Willett, Glaz & Zhou, “Active Detection With A Barrier Sensor Network Using A Scan Statistic,” JOE 2012. 
-  Glaz, Guerriero & Sen, “Approximations for a three dimensional scan statistic,” J. Comp. in App. Prob., 2009. 



Slide	
  19	
  NATO STO IST-155, Willett 

Poisson	
  Field	
  
Poisson Sensor Field

 sensor declaring detection 

scanning window a division slice 

▶ System configuration:
∙ The total number of activated sensors has a
Poisson distribution;

∙ Activated sensors are uniformly distributed within
the barrier band.

12 / 17

Numerical Results: Poisson (cont.)
ROC curves:
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0
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Scan SNR=7dB
Scan SNR=5dB
Scan SNR=3dB
CRT SNR=7dB
CRT SNR=5dB
CRT SNR=3dB

(a)W = 7 and pf = 0.05
Observation:

▶ Scan statistics has better performance than the CRT
for submarine detection.

15 / 17

•  Scan	
  sta6s6cs	
  have	
  broad	
  applica6on:	
  
•  epidemiology	
  
•  ecology	
  
•  quality	
  control	
  and	
  reliability	
  
•  intrusion	
  detec6on	
  

•  The	
  key	
  ingredient	
  to	
  scan	
  sta6s6cs	
  is	
  
that	
  the	
  threshold	
  can	
  be	
  set	
  
analy6cally	
  and	
  explicitly.	
  

•  admi,edly,	
  the	
  formula	
  is	
  complicated	
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•  Consider	
  peer-­‐to-­‐peer	
  communica6on	
  
–  as	
  opposed	
  to	
  “parallel”	
  or	
  “serial”	
  topology	
  

•  Each	
  sensor	
  has	
  its	
  own	
  observa6on	
  and	
  sends	
  its	
  
informa6on	
  to	
  its	
  “neighbors”	
  defined	
  by	
  the	
  graph	
  
	
  

•  Require	
  obvious	
  condi6on	
  on	
  eigenvalues	
  
of	
  W	
  and	
  that	
  it	
  be	
  doubly-­‐stochas6c	
  

Consensus	
  in	
  Sensor	
  Networks	
  

0 500 1000 1500
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change of distribution

Ideal Centralized System
Running Consensus
Threshold

Figure 1: Empirical realizations of the running consen-
sus statistics, in a network made of 10 sensors (thinner
gray lines, almost superimposed to each other). The
bold red line refers to the centralized system.

the above matrices, let us consider the classical example
of a pairwise averaging algorithm, according to which, at
time n, a pair (h, k) of sensors is uniformly and randomly
selected. The corresponding realization of Wn is

Wn = I− (uk − uh)(uk − uh)T

2
, (9)

where I is the identity matrix, and uk is a vector of all
zeros, but for the k−th entry which is unity. Using this
matrix into the update equation simply amounts to let
sensors h and k replace their state by the corresponding
arithmetic averages. Formally, in this case En = {h, k}.

Our solution for quickest detection via running con-
sensus is finally obtained by merging the update rule (8)
to the classical Page’s recursion (2), the overall recursion
(at the j−th node) becoming1

Sn,j = max{0,U(Sn−1,j)}. (10)

Before going into the details of performance eval-
uation, it is instructive to start from empirical evi-
dences. Figure 1, obtained by computer experiments,
displays the behavior of the ideal centralized statistic
Sn (bold red curve), along with the locally computed
sensor statistics Sn,j (tiny gray curves) of the running
consensus Page’s detectors. A general trend is observed:
in a first portion of the time axis, the statistics often re-
set to zero; once that the change in distribution takes
place, they tend to grow up to eventually cross the de-
tection threshold. As a matter of fact, the different run-
ning consensus statistics always behave quite similarly,
and, in addition, closely track the statistic of the cen-
tralized system. This in turn implies that the instants
of detection events, i.e., the times at which the curves
cross the positive threshold, are almost the same for the

1While the update rule U is linear, the addition of Page’s re-
set rule introduce a nonlinear effect, which is not present in the
classical gossip algorithms.

Figure 2: Network topologies for the two examples con-
sidered in Sect. 4. The circles represent the vertex set V,
while the random edge set En is selected among the pos-
sible connections shown by lines between the vertices.

different statistics, leaving hope that the performance of
the running consensus quickest detectors may approach
the theoretical limit represented by the performance of
the centralized system.

This behavior can be explained as follows. Running
consensus introduces strong dependencies among nodes
by continuously propagating information across the net-
work, and this implies that the change is detected at
almost equal times at different sensors. As time elapses,
the effect is emphasized and the statistics Sn,j at differ-
ent j become closer and closer each other.

As a consequence, provided that the algorithm
evolves for a sufficiently long time, a reliable estimate of
the instant at which the distribution-change took place
can be obtained by querying any of the M nodes, and
the performance of the running consensus scheme can be
computed with reference to any of the sensors, according
to the genuinely flat nature of the system.

3.1 Performance evaluation

A complete derivation of the performance formulas is
not reported with all the details here; we refer the reader
to [7]. The arguments below, however, are sufficient for
a complete understanding of the main ideas behind the
formal derivations.

It is convenient to regard the local detection statistic
as Sn,j = Sn + en,j , where the difference between the
current state Sn,j and its centralized counterpart Sn is
measured by an error term, that is assumed for now to
be bounded, |en,j | ≤ ε, ∀n and ∀j.

Sensors initially acquire data following the distribu-
tion f0(x). Until a threshold crossing occurs (either be-
cause a real change happened, or because a false alarm
is going to be declared), the j−th sensor may have expe-
rienced a certain number of resets. This number, how-
ever, does not depends only upon Sn, but it is also de-
termined by the behavior of the error term en,j . On the
other hand, it is reasonable to assume that, for γ $ ε,
the role of the centralized statistic Sn as to the thresh-
old crossing will be predominant. Formally we have the
following: Let us define

N = argmin
n

{Sn > γ − ε},

N = argmin
n

{Sn > γ + ε}, (11)

that are nothing but the stopping times pertaining to
a centralized Page’s test with modified thresholds. Ob-

1

Help!
Me!

s0 = z

sn = Wsn�1

September 6, 2016 DRAFT

1

Help!
Me!

s0 = z

sn = Wsn�1

September 6, 2016 DRAFT

- Braca, Marano, Matta & Willett, “Consensus-Based Page’s Test in Sensor Networks,” Sig. Proc. 2009. 
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•  Consider	
  at	
  all	
  sensors	
  j	
  a	
  switch	
  in	
  distribu6on:	
  
	
  
	
  

•  Require	
  
	
  
	
  
	
  

•  For	
  example,	
  pair-­‐wise	
  averaging	
  

Consensus	
  for	
  Quickest	
  Detec6on	
  

QUICKEST DISTRIBUTED DETECTION VIA RUNNING CONSENSUS

Paolo Braca†, Stefano Marano†, Vincenzo Matta†, Peter Willett∗
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ABSTRACT
Running consensus is a recently proposed distributed
strategy for fostering agreement among sensors of fully
flat networks, by interleaving the two stages of mea-
surements and node-to-node communications. Quickest
detection is a well-established technique for discovering
abrupt changes (if any) in the statistical distribution of
the observed data.

In this paper we tailor the running consensus idea
to the quickest detection problem, to address change-
detection issues in distributed inference systems with
random and time-varying sensors’ connections, in ar-
chitectures without fusion center. Performance bench-
marks are expressed in terms of detection delay and false
alarm rate, for which closed form approximations are
derived, yielding a simple analytical expression of the
operational characteristic of the detector. The proposed
system is tested on typical signal processing problems by
means of numerical simulations that validate the theo-
retical analysis.

Keywords—Quickest detection, Page’s test, Running
consensus.

1. INTRODUCTION

Running consensus is a gossip paradigm for sensor net-
works, originally proposed in [1], whose main feature is
the simultaneous managing of the acquisition and data-
exchange stages, that allows reaching agreement at node
level by elaborating on the time-varying dataset col-
lected by the network, elaborating on classical gossip
protocols [2–5]. Running consensus has been recently
recognized as an efficient way to perform distributed de-
tection in non-parallel, fully flat architectures, that is,
when no fusion center is available [6,7]. Extensions and
applications to random and time-varying networks have
been proposed in [8].

The typical way of operation for such decentralized
detectors prescribes that the sensors acquire data, ex-
change their local information, that, suitably processed,
lead to agreement about a final decision that is (asymp-
totically with time) common to all nodes.

In this paper, we focus on detecting abrupt changes
in the data distribution, usually referred to as quickest
detection. This is a classical problem, that emerges in
practical scenarios where a sudden change in the state of
the nature is to be reported as soon as possible. Page’s

test is a well-established signal processing technique for
quickest change detection, relying upon the so-called
CUSUM statistic [9–11].

Departing from the classical centralized application
of Page’s tests, the investigation has been extended in
several directions, including transient changes, partially
unspecified statistical models, different optimization cri-
teria constraints, quantized data. Useful entry points for
these topics can be, among many others, [10–12].

However, as far as we can tell, quickest change de-
tection for fully distributed detection in sensor networks
has not received the same degree of attention in the top-
ical literature. This motivates us in pursuing the basic
idea behind this work, that of merging the running con-
sensus update rule with Page’s test recursion.

The remainder of this paper is so organized. In
Sect. 2 we pose and formalize the problem, also includ-
ing the basic relevant facts about Page’s test. Section 3
contains the main results of the proposed strategy. Sec-
tion 4 collects a summary of the results of the numerical
simulations used for testing the algorithm, in the con-
text of typical change detection problems. Conclusive
remarks are provided in Sect. 5.

2. PROBLEM FORMALIZATION

The basic change detection problem considered in this
work is now formalized according to a very classi-
cal setup [9, 10]. In the following, the index j ∈
{1, 2, . . . ,M} identifies a specific sensor, while n ≥ 1
is the (discrete) time index. The n−th observation xn,j

collected by the j−th node follows the null-hypothesis
distribution f0(x) until a deterministic but unknown
time n0. From n0 (included) on, the distribution for
all j suddenly changes to f1(x).

The goal of the network is to discover the change as
soon as possible, with a constraint on the average time
between false alarms. Throughout the paper, we make
the basic assumption of statistical independence across
time and across sensors. We have, for all j,

f0(x) : x1,j , x2,j , . . . , xn0−1,j

↘
f1(x) : xn0,j , xn0+1,j , . . .

Note that, at each time slot n, the network globally
collects a vector of observations:

xn = [xn,1, xn,2, . . . , xn,M ].

2.1 Classical parallel architecture

If a fusion center is available, the quickest detection
problem can be addressed by means of the well-known
Page’s test [9], which is basically made of the following
three elements.
• The CUSUM log-likelihood of the data

Sn =
n∑

i=1

M∑

j=1

log
f1(xi,j)

f0(xi,j)
. (1)

• A recursion rule in the form

Sn = max




0, Sn−1 +
M∑

j=1

log
f1(xn,j)

f0(xn,j)




 , (2)

where we explicitly note that the log-likelihood resets
each time it falls below zero, which is thus the point
from which Page’s test restarts.

• A decision rule prescribing that a change is declared
as soon as a threshold γ is crossed, implicitly defining
the test stopping time as

N = argmin
n

{Sn ≥ γ}. (3)

The usual optimality criterion for assessing the test
performance is that of imposing a constraint on the
false alarm rate, and accordingly minimizing the de-
tection delay. The former is defined as the reciprocal
of the average sample size under the null hypothesis,
1/E0[N ], where E0,1[·] denotes expectation computed
under distribution f0,1(x). The latter is approximated
by E1[N ], which is in fact an upper bound on the real de-
lay, corresponding to the assumption that the CUSUM
is exactly zero at time n0. The precise computation
of E1[N ] would instead require knowledge of the exact
value of the CUSUM statistic at n0, and it is usually
intractable [9, 10, 13].

The above key quantities admit closed form ap-
proximations mainly relying upon neglecting the excess
over the threshold of the test statistic at the stopping
time [9,10,13]. Specifically, the false alarm rate and de-
tection delay of the centralized system (suffix c consis-
tently appended) are related to the detection threshold
via

Rc(γ) ≈ M ∆01

eγ − γ − 1
, (4)

Dc(γ) ≈ γ + e−γ − 1

M ∆10
, (5)

where ∆01 is the Kullback-Leibler divergence [10] from
f0(x) to f1(x), and ∆10 is similarly defined. By combin-
ing (4) and (5) the basic operational curve Dc(R) of the
detector, that expresses the detection delay as a func-
tion of a prescribed false alarm rate R, can be obtained.
In the regime of large γ (corresponding to small false
alarm rates), the operational curve can be conveniently
approximated by the following closed form

Dc(R) ≈ log (M ∆01/R)

M ∆10
. (6)

Note that the overall divergence pertaining to a single
time slot is M ∆, accounting for the fact that, at each
time slot, M independent observations are collected.

3. RUNNING CONSENSUS FOR
QUICKEST DETECTION

As already anticipated, the main strategy proposed in
this work for quickest distributed detection in fully flat
networks relies upon the running consensus algorithm.
Details about this latter can be found in [1, 6] and will
not be repeated here for space reasons. In the following
we limit ourselves to report the basic elements in order
to make the paper self-contained.

The network topology is formalized by an undirected
graph (V, En) where V = {1, 2, . . . ,M} is the vertex set
(sensors) and En the edge set that describes sensors’ con-
nections. To address the general problem of random and
time-varying sensors’ connections, we allow En to be ran-
dom and dependent upon the time slot n. Accordingly,
at each n, M data are collected by the network and a
realization of En is drawn, meaning that some subset of
V is selected, and the corresponding nodes share their
states according to a standard consensus algorithm [2].
The exchanged data are not simply the measurements,
but rather the suitable detection statistics computed by
the nodes, summarized in the state variables Sn,j .

Stressing on the flat architecture of the system, we
would like to achieve the following goals.
• Each sensor implements its own test by comparing

the local statistic Sn,j to a detection threshold γ.
The j−th test accordingly stops at a random time

Nj = argmin
n

{Sn,j ≥ γ}. (7)

• No post-detection fusion of the local decisions is al-
lowed, the data fusion being instead embodied in the
running consensus protocol.

• The decision taken by any of the sensors must be
representative of the (unavailable) global, centralized
decision. Accordingly, it must be possible to retrieve
a reliable decision by querying an arbitrary node in
the network.
These design goals basically require asymptotic

(with n) similarity of Sn,j with the centralized detec-
tion statistic Sn, for all j. To this aim, we propose the
following update rule, that is essentially borrowed from
the running consensus data-exchange protocol [1, 6]:





Sn,1

Sn,2
...

Sn,M



 = Wn





Sn−1,1

Sn−1,2
...

Sn−1,M



+M Wn





log f1(xn,1)
f0(xn,1)

log f1(xn,2)
f0(xn,2)
...

log f1(xn,M )
f0(xn,M )





or, in a more compact form

Sn,j = U({Sn−1,j}Mj=1). (8)

The M by M consensus matrices Wn, n = 1, 2, . . . ,
are iid (independent identically distributed) and doubly
stochastic. To better highlight the physical meaning of
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Figure 1: Empirical realizations of the running consen-
sus statistics, in a network made of 10 sensors (thinner
gray lines, almost superimposed to each other). The
bold red line refers to the centralized system.

the above matrices, let us consider the classical example
of a pairwise averaging algorithm, according to which, at
time n, a pair (h, k) of sensors is uniformly and randomly
selected. The corresponding realization of Wn is

Wn = I− (uk − uh)(uk − uh)T

2
, (9)

where I is the identity matrix, and uk is a vector of all
zeros, but for the k−th entry which is unity. Using this
matrix into the update equation simply amounts to let
sensors h and k replace their state by the corresponding
arithmetic averages. Formally, in this case En = {h, k}.

Our solution for quickest detection via running con-
sensus is finally obtained by merging the update rule (8)
to the classical Page’s recursion (2), the overall recursion
(at the j−th node) becoming1

Sn,j = max{0,U(Sn−1,j)}. (10)

Before going into the details of performance eval-
uation, it is instructive to start from empirical evi-
dences. Figure 1, obtained by computer experiments,
displays the behavior of the ideal centralized statistic
Sn (bold red curve), along with the locally computed
sensor statistics Sn,j (tiny gray curves) of the running
consensus Page’s detectors. A general trend is observed:
in a first portion of the time axis, the statistics often re-
set to zero; once that the change in distribution takes
place, they tend to grow up to eventually cross the de-
tection threshold. As a matter of fact, the different run-
ning consensus statistics always behave quite similarly,
and, in addition, closely track the statistic of the cen-
tralized system. This in turn implies that the instants
of detection events, i.e., the times at which the curves
cross the positive threshold, are almost the same for the

1While the update rule U is linear, the addition of Page’s re-
set rule introduce a nonlinear effect, which is not present in the
classical gossip algorithms.

Figure 2: Network topologies for the two examples con-
sidered in Sect. 4. The circles represent the vertex set V,
while the random edge set En is selected among the pos-
sible connections shown by lines between the vertices.

different statistics, leaving hope that the performance of
the running consensus quickest detectors may approach
the theoretical limit represented by the performance of
the centralized system.

This behavior can be explained as follows. Running
consensus introduces strong dependencies among nodes
by continuously propagating information across the net-
work, and this implies that the change is detected at
almost equal times at different sensors. As time elapses,
the effect is emphasized and the statistics Sn,j at differ-
ent j become closer and closer each other.

As a consequence, provided that the algorithm
evolves for a sufficiently long time, a reliable estimate of
the instant at which the distribution-change took place
can be obtained by querying any of the M nodes, and
the performance of the running consensus scheme can be
computed with reference to any of the sensors, according
to the genuinely flat nature of the system.

3.1 Performance evaluation

A complete derivation of the performance formulas is
not reported with all the details here; we refer the reader
to [7]. The arguments below, however, are sufficient for
a complete understanding of the main ideas behind the
formal derivations.

It is convenient to regard the local detection statistic
as Sn,j = Sn + en,j , where the difference between the
current state Sn,j and its centralized counterpart Sn is
measured by an error term, that is assumed for now to
be bounded, |en,j | ≤ ε, ∀n and ∀j.

Sensors initially acquire data following the distribu-
tion f0(x). Until a threshold crossing occurs (either be-
cause a real change happened, or because a false alarm
is going to be declared), the j−th sensor may have expe-
rienced a certain number of resets. This number, how-
ever, does not depends only upon Sn, but it is also de-
termined by the behavior of the error term en,j . On the
other hand, it is reasonable to assume that, for γ $ ε,
the role of the centralized statistic Sn as to the thresh-
old crossing will be predominant. Formally we have the
following: Let us define

N = argmin
n

{Sn > γ − ε},

N = argmin
n

{Sn > γ + ε}, (11)

that are nothing but the stopping times pertaining to
a centralized Page’s test with modified thresholds. Ob-
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Figure 1: Empirical realizations of the running consen-
sus statistics, in a network made of 10 sensors (thinner
gray lines, almost superimposed to each other). The
bold red line refers to the centralized system.

the above matrices, let us consider the classical example
of a pairwise averaging algorithm, according to which, at
time n, a pair (h, k) of sensors is uniformly and randomly
selected. The corresponding realization of Wn is

Wn = I− (uk − uh)(uk − uh)T

2
, (9)

where I is the identity matrix, and uk is a vector of all
zeros, but for the k−th entry which is unity. Using this
matrix into the update equation simply amounts to let
sensors h and k replace their state by the corresponding
arithmetic averages. Formally, in this case En = {h, k}.

Our solution for quickest detection via running con-
sensus is finally obtained by merging the update rule (8)
to the classical Page’s recursion (2), the overall recursion
(at the j−th node) becoming1

Sn,j = max{0,U(Sn−1,j)}. (10)

Before going into the details of performance eval-
uation, it is instructive to start from empirical evi-
dences. Figure 1, obtained by computer experiments,
displays the behavior of the ideal centralized statistic
Sn (bold red curve), along with the locally computed
sensor statistics Sn,j (tiny gray curves) of the running
consensus Page’s detectors. A general trend is observed:
in a first portion of the time axis, the statistics often re-
set to zero; once that the change in distribution takes
place, they tend to grow up to eventually cross the de-
tection threshold. As a matter of fact, the different run-
ning consensus statistics always behave quite similarly,
and, in addition, closely track the statistic of the cen-
tralized system. This in turn implies that the instants
of detection events, i.e., the times at which the curves
cross the positive threshold, are almost the same for the

1While the update rule U is linear, the addition of Page’s re-
set rule introduce a nonlinear effect, which is not present in the
classical gossip algorithms.

Figure 2: Network topologies for the two examples con-
sidered in Sect. 4. The circles represent the vertex set V,
while the random edge set En is selected among the pos-
sible connections shown by lines between the vertices.

different statistics, leaving hope that the performance of
the running consensus quickest detectors may approach
the theoretical limit represented by the performance of
the centralized system.

This behavior can be explained as follows. Running
consensus introduces strong dependencies among nodes
by continuously propagating information across the net-
work, and this implies that the change is detected at
almost equal times at different sensors. As time elapses,
the effect is emphasized and the statistics Sn,j at differ-
ent j become closer and closer each other.

As a consequence, provided that the algorithm
evolves for a sufficiently long time, a reliable estimate of
the instant at which the distribution-change took place
can be obtained by querying any of the M nodes, and
the performance of the running consensus scheme can be
computed with reference to any of the sensors, according
to the genuinely flat nature of the system.

3.1 Performance evaluation

A complete derivation of the performance formulas is
not reported with all the details here; we refer the reader
to [7]. The arguments below, however, are sufficient for
a complete understanding of the main ideas behind the
formal derivations.

It is convenient to regard the local detection statistic
as Sn,j = Sn + en,j , where the difference between the
current state Sn,j and its centralized counterpart Sn is
measured by an error term, that is assumed for now to
be bounded, |en,j | ≤ ε, ∀n and ∀j.

Sensors initially acquire data following the distribu-
tion f0(x). Until a threshold crossing occurs (either be-
cause a real change happened, or because a false alarm
is going to be declared), the j−th sensor may have expe-
rienced a certain number of resets. This number, how-
ever, does not depends only upon Sn, but it is also de-
termined by the behavior of the error term en,j . On the
other hand, it is reasonable to assume that, for γ $ ε,
the role of the centralized statistic Sn as to the thresh-
old crossing will be predominant. Formally we have the
following: Let us define

N = argmin
n

{Sn > γ − ε},

N = argmin
n

{Sn > γ + ε}, (11)

that are nothing but the stopping times pertaining to
a centralized Page’s test with modified thresholds. Ob-
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Figure 3: Operational curve of the running-consensus
quickest detector. The detection delay is shown as func-
tion of the false alarm rate for the Bernoulli example
considered in Sect. 4. Dots refer to simulations of the
detector, while the continuous and dashed curves show
the operational characteristic of the ideal centralized
system.

viously, we have E0,1[N ] ≤ E0,1[Nj ] ≤ E0,1[N ]. Let us
focus on f1(x). Applying the last inequality, we have,
for the detection delay at the j − th sensor:

Dc(γ − ε) ≤ Dj ≤ Dc(γ + ε).

In the regime of large γ (i.e., of small false alarm
rate), we can neglect the effect of ε (which is # γ), and
obtain the approximate operational characteristic of the
running scheme:

Dr(R) ≈ log (M ∆01/R)

M ∆10
. (12)

We have assumed so far that the error is bounded.
Such assumption is usually made in sequential analy-
sis for managing the errors due to the excesses over the
thresholds, and provides simple refinements of Wald’s
approximations, see, e.g. [13]. We would like to men-
tion that an extension of these results to the case that
the errors are bounded only on the average can also be
pursued, but this would require rather advanced math-
ematical tools [14].

4. NUMERICAL EXPERIMENTS

In this section we present a summary of the results ob-
tained from Monte Carlo simulations made in two typ-
ical detection setups. As a first example, we assume
the measurements taken by the sensors as iid binary
variables taking value in {0, 1}, drawn from a Bernoulli
distribution. Initially, the outcomes are equiprobable,
while after the change the probability of 1 slightly mod-
ifies to 0.505. Note that the two hypotheses are “quite
close”, thus leading to a challenging detection task.

As to the exchanging protocol, we assume that the
nodes communicate only with their direct (single hop)
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Figure 4: Operational curve of the running-consensus
quickest detector. The detection delay is shown as func-
tion of the false alarm rate for the Gaussian example of
Sect. 4. Dots refer to simulations of the running con-
sensus strategy, while the continuous and dashed curves
pertain to the ideal centralized system. Asterisks show
the operational curve of a bank of Page’s detectors.

neighbors. The network topology is schematically dis-
played in the left plot of Fig. 2, where neighboring sen-
sors are connected by straight lines. It is also assumed
that at each time step v pairs of neighboring sensors are
selected to average their own states. In the following
examples we use v = 5.

The results of 104 Monte Carlo simulations, with
M = 10 sensors, are shown in Fig. 3, where the empirical
operational characteristic of the detector is compared to
the operational curve Dc(R) obtained by combining (4)
and (5); also shown is the closed-form approximation in
eq. (6), valid for tight false alarm rates R. As it can be
seen, the match with Dc(R) in this case is excellent, and
quite accurate is also the match with (6) in the regime
of interest.

Consider now a second case study, namely, the clas-
sical change detection problem of zero-mean Gaussian
observations with different variances. Without loss of
generality, we assume that the variance under the null
hypothesis is set to 1, and that pertaining to the distri-
bution after the change is σ2. As communication strat-
egy, we adopt here the same repeated pairwise averaging
(v = 5), but with the topology shown in the right plot
of Fig. 2.

In Fig. 4 we report the results from 104 Monte Carlo
iterations with M = 10 sensors, and a value of σ =
1.032, that is, a value very close to 1 that again leads to
a difficult detection task. Comments similar to those of
the previous example apply, and the match appears to
be satisfying for any practical purposes.

To further highlight the benefits of the (pre-
detection) data fusion achieved via running consensus,
let us consider a simpler detection scheme working in flat
architectures: a bank of Page’s detectors that indepen-
dently process the locally observed data, without any
form of on-the-fly cooperation. In this case, as soon as
one of these filters declares a change is the distribution
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- Blanding, Willett, Coraluppi & Bar-Shalom, “Multisensor Track Management for Targets with Fluctuating SNR,” TAES 2009. 
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Track	
  Termina6on	
  Tests	
  

•  Sequen6al	
  tests	
  
–  Page	
  test	
  
–  Shiryaev	
  test	
  

•  Rule-­‐Based	
  
–  K/N	
  rule	
  

•  Conclusion:	
  	
  
–  Shiryaev	
  test	
  

performs	
  best	
  

Comparison of average track duration 
for different track termination rules 
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A	
  Note	
  on	
  Quan6zed	
  Es6ma6on	
  
z1 

z2 

z3 

z4 

zn 

•  It is fairly clear that the estimation 
performance here is limited by the 
quantization fineness and does not 
improve beyond a certain point with n. 

•  Paradoxically, the lower the sensor 
noise the worse this behavior is. 

•  Luo’s solution is to use a randomized 
quantizer. 

zk Pr(uk=λi-1) 
Pr(uk=λi) 

λi λi+1 λi-1 

- Luo, “Universal Decrentalized Estimation in a Bandwidth constrained Sensor Network,” T-IT 2005. 
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•  Suppose	
  one	
  has	
  a	
  repository	
  of	
  
training	
  data	
  and	
  a	
  collec6on	
  of	
  
local	
  agents.	
  

•  As	
  opposed	
  to	
  our	
  usual	
  decision-­‐
making	
  based	
  on	
  distributed	
  
observa6ons,	
  let	
  us	
  here	
  assume	
  
that	
  all	
  decision-­‐makers	
  observe	
  the	
  
same	
  datum	
  but	
  that	
  the	
  
“database”	
  of	
  training	
  data	
  is	
  
distributed.	
  

•  Explore	
  extreme	
  case:	
  each	
  sensor	
  
has	
  only	
  only	
  training	
  datum.	
  

•  Applica6on	
  here	
  is	
  regression.	
  

Decentralized	
  Learning	
  

2

rr
nn
((XX00))

((XX1, 1, YY11))

      XX00

((XX2, 2, YY22))

      XX00

((XXnn, , YYnn))

      XX00

FCFC

……

Fig. 1. Notional sketch of the distributed learning problem. The i-th sensor is equipped with the i-th example (Xi, Yi) taken

from the training set, and with the current observation variable X0. Remote sensors communicate with the fusion center, which

is demanded to produce the final estimate rn(X0).

Following [3] we consider a decentralized version of this problem in which a network of n

sensors is deployed for estimation purposes. In order to accomplish the estimation task, a training

set Tn = {(Xi, Yi)}ni=1, made of i.i.d. (independent, identically distributed) variables with the

same distribution of (X0, Y0) is disseminated through the network. Assume for simplicity that

each sensor reads a single example belonging to the overall training set, namely, the i-th sensor

owns (Xi, Yi). We adhere to the standard assumption that the Yi’s are scalar, but extensions can

be easily managed.

At a certain time instant, the observation variable X0 is made available to a fusion center (FC),

which broadcasts it to all sensors. These latter, by exploiting the locally available examples,

deliver messages to the FC, which is tasked to produce the final estimate. Fig. 1 is a notional

sketch of the addressed setup. According to the emerging paradigm of distributed learning [3]–[5],

we assume here that the communication from the FC to the sensors is essentially unconstrained,

such that X0 is perfectly recovered by the nodes. On the other hand, severe communication

constraints have to be imposed on the sensors’ side, due to their typical limitations in terms of

available energy and hardware/software complexity.

Let us briefly discuss the (classical) case that such constraints be absent. This situation is

clearly equivalent to that of a centralized system accessing the whole training set and X0. In

March 22, 2013 DRAFT
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•  Nearest-­‐neighbor	
  learning	
  gets	
  ignored	
  some6mes.	
  
–  it	
  can	
  be	
  shown	
  that	
  the	
  NN	
  decision	
  is	
  (asympto6cally)	
  no	
  
worse	
  than	
  twice	
  the	
  op6mum,	
  2P*(e)	
  

–  with	
  k-­‐NN	
  we	
  have	
  P(e)	
  goes	
  to	
  (1+1/k)P*(e)	
  
•  There	
  is	
  a	
  similar	
  suite	
  of	
  results	
  with	
  NN	
  regression.	
  

– MMSE	
  asympto6cally	
  no	
  worse	
  than	
  twice	
  MMSE*	
  

•  How	
  do	
  we	
  achieve	
  this?	
  
–  transmission	
  rule	
  like	
  with	
  censoring	
  
–  sensor	
  i	
  transmits	
  aNer	
  delay	
  propor6onal	
  to	
  αnd(X,Xi)	
  
–  as	
  long	
  as	
  αn	
  is	
  propor6onal	
  to	
  knn	
  this	
  works	
  

Decentralized	
  NN	
  Learning	
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Blum	
  &	
  Sadler’s	
  Access	
  Rule	
  

. . . . . .

kn-NN estimates
.

.
rn(x0) =

∑kn
i=1 Y(i,n)(x0)

kn
.

Assume the neighbors ”so close” to x0
that Y(i,n)(x0) ∼ f(y|x0).

Assume that they are ”so many” that we
can invoke the LLN:

∑kn
i=1 Y(i,n)(x0)

kn
≈ E{Y0|X0 = x0}︸ ︷︷ ︸

r(x0)

.
x-axis

y-axis r(x)

First 5 neighbors

X0

*

Peter Willett (Uconn) Decentralized NN Learning over Noisy Channels... 07/2013 12 / 24
. . . . . .

NN Access policy
Marano, Matta, Willett 2013, IEEE-TSP, in print

Sensor i computes ‖Xi −X0‖ and sends Yi at a
transmission time αn ‖Xi −X0‖
Sensors with better observations transmit first!

The FC receives labels naturally ordered
according to the NN criterion.

YY11

||X||X1 1 --  XX00||||

NN NN accessaccess

… …

FCFC
YY((kk,,nn)) YY(2,(2,nn)) YY(1,(1,nn))

C
h
a
n
n
e
l

C
h
a
n
n
e
l

YY22

YYnn

||X||X2 2 --  XX00||||

NN NN accessaccess

||||XXnn  --  XX00||||

NN NN accessaccess

……

R. S. Blum and B. M. Sadler, ”Energy efficient signal detection in sensor networks using ordered transmissions,

IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3229-3235, Jul. 2008.

Peter Willett (Uconn) Decentralized NN Learning over Noisy Channels... 07/2013 16 / 24When kn agents have been heard from, FC sends broadcast to stop. 

- Blum & Sadler, “Energy efficient signal detection in sensor networks using ordered transmissions,” TSP 2008. 
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Fig. 8. Same of Fig 7, in the Gaussian/Weibull half-mixed case λ = 0.5.
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Fig. 9. Universal access for the distributed kn-NN regression (Theorem 1, and eq. (13)). The transmission times are set as in

eq. (4), with kn = 3n1/3, ξn = log n, and τmin = 1. Uppermost plot: Signal crowding probability P{Mn ≤ δ}. Lowermost

plot: Maximum transmission time exceedance probability P{T(kn) > nτ}. In both plots, the different curves correspond to

different values of the training set size, namely, n = 22, 100, 464, 2154, 10000, from the darkest (n = 22) to the brightest

(n = 10000).

March 22, 2013 DRAFT

•  The various lines 
here refer to 
different schemes 
to communicate 
the agents’ 
regression data to 
the FC. 

•  The number of 
sensors is n. 

 

- Marano, Matta & Willett, “Nearest-neighbor distributed learning by ordered transmissions,” TSP 2013. 
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Decentralized	
  Es6ma6on	
  with	
  
MOU	
  







•  bandwidth	
  constraint:	
  
–  sensors	
  each	
  transmit	
  one	
  

measurement	
  
–  which	
  is	
  the	
  most	
  informa6ve?	
  

•  here	
  we	
  discuss	
  k-­‐mos	
  
–  “modulus	
  order	
  sta6s6c”	
  
–  transmit	
  the	
  kth-­‐nearest	
  

measurement	
  to	
  where	
  the	
  target	
  
is	
  expected	
  to	
  be	
  

- Braca, Guerriero, Marano, Matta & Willett, “Selective Measurement Transmission in Distributed Estimation with DA,” TSP 2010. 
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€ 

p(Z |θ,n) = (1− Pd ) 1V( )
n
µ(n) +

1
n
Pd 1V( )

n−1
µ(n −1) p(zi |θ)

i=1

n

∑

µ(n)= λV( )n e−λV
n!

Data association likelihood for frame Z={z1,z2, ... ,zn}, probability of 
detection Pd, clutter intensity λ, observation volume V and likelihood 
model p(z|θ) (this is commonly a Gaussian pdf centered at θ). 

 

 



 














 










 














1-Dimensional Gate (1D) 2-Dimensional Gate (2D) 
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


 

 

 



















Note that the  
sensors 
corroborate one 
another, for 
case that θ is far 
away from 
expected 
location θ0 
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A Fisher Information 
analysis suggests that 
when the clutter is high 
it is better to transmit a 
higher k-mos. 
 
 
Apparently, however, 
the probability that a 
given k-mos is target 
originated is always 
highest for the nearest 
neighbor. 
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Probability densities of various k-mos 
for the clutter-only situation. Low 
clutter is three gated contacts, and 
high clutter is ten gated contacts. 

Probability densities of various k-mos 
for the target-present situation (true θ 

is unity). Note the appearance of a 
“bump” around the true θ for the high-

clutter case – this is why a higher k-
mos may be a better choice. 
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Probability densities of various k-mos 
for the clutter-only situation and two-
dimensional observations. 

Probability densities of various k-mos 
for the target-present situation and 

two dimensions. Note that the “bump”  
at the true θ persists. 
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•  Some	
  slides	
  from	
  “Industrial	
  Strength	
  Real	
  World	
  
Mul6-­‐Sensor	
  Fusion”	
  by	
  Fred	
  Daum	
  (May	
  2nd	
  2016).	
  

•  Track-­‐to-­‐Track	
  (T2T)	
  associa6on	
  
–  in	
  the	
  two-­‐sensor	
  case	
  it	
  is	
  rela6vely	
  easy	
  
–  auc6on	
  algorithm	
  

•  Bias	
  es6ma6on	
  
–  example	
  of	
  passive-­‐sensor	
  tracking	
  with	
  angle	
  biases	
  

Data	
  Fusion	
  for	
  Tracking	
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•  Type	
  I	
  configura6on:	
  
–  Single	
  sensor	
  situa6on,	
  which	
  serves	
  as	
  a	
  baseline.	
  	
  

•  Type	
  II	
  configura6on:	
  
–  Single	
  sensor	
  tracking	
  followed	
  by	
  track	
  to	
  track	
  associa3on	
  and	
  
fusion.	
  Subtypes	
  include	
  with/without	
  memory,	
  and	
  with/
without	
  feedback.	
  	
  

•  Type	
  III	
  configura6on:	
  
–  Measurement	
  to	
  measurement	
  associa6on	
  across	
  sensors	
  with	
  
all	
  the	
  measurements	
  from	
  the	
  same	
  6me	
  (the	
  sensors	
  are	
  
assumed	
  perfectly	
  synchronized),	
  i.e.,	
  sta3c	
  associa3on,	
  
followed	
  by	
  central	
  dynamic	
  associa3on	
  and	
  tracking.	
  	
  

•  Type	
  IV	
  configura6on:	
  
–  Completely	
  centralized	
  associa3on	
  and	
  tracking.	
  	
  

Taxonomy	
  of	
  Fusion	
  for	
  Tracking	
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•  Single	
  sensor	
  situa6on.	
  	
  
•  In	
  a	
  mul6sensor	
  situa6on	
  this	
  corresponds	
  to	
  repor3ng	
  

responsibility	
  (RR).	
  Each	
  sensor	
  operates	
  alone	
  and	
  has	
  
responsibility	
  for	
  a	
  certain	
  sector	
  of	
  the	
  surveillance	
  
region	
  —	
  no	
  fusion	
  of	
  the	
  data	
  (measurements	
  or	
  tracks)	
  
from	
  the	
  mul6ple	
  sensors	
  is	
  done.	
  	
  

•  As	
  targets	
  move	
  from	
  one	
  sector	
  to	
  another,	
  they	
  are	
  
handed	
  over	
  –	
  handoff	
  –	
  in	
  a	
  manner	
  that	
  depends	
  on	
  
the	
  system.	
  Generally,	
  the	
  mechanism	
  is	
  to	
  assign	
  
responsibility	
  to	
  the	
  sensor	
  with	
  the	
  highest	
  expected	
  
accuracy,	
  although	
  workload	
  and	
  communica6on	
  
constraints	
  can	
  also	
  play	
  a	
  role.	
  	
  

Type	
  I	
  Configura6on	
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•  Each	
  sensor	
  maintains	
  its	
  own	
  (distributed)	
  track.	
  
–  this	
  is	
  oNen	
  the	
  preferred	
  solu6on	
  
–  solu6on	
  is	
  robust	
  to	
  failure	
  and	
  rela6vely	
  light	
  in	
  its	
  
communica6on	
  requirements	
  

•  Issues:	
  	
  
–  sensor	
  registra6on	
  &	
  bias	
  
–  track-­‐to-­‐track	
  associa6on	
  (T2TF)	
  
–  correla6on	
  between	
  distributed	
  tracks?	
  
–  fused	
  covariance?	
  	
  

Type	
  II	
  Configura6on	
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•  Synthe6c	
  example	
  of	
  
detec6ons	
  to	
  be	
  fused.	
  
–  Covariances	
  are	
  random,	
  	
  
–  Pd	
  =	
  50%,	
  25	
  sensors,	
  λ	
  =	
  5.	
  
–  There	
  are	
  four	
  “true”	
  targets	
  

illustrated	
  by	
  magenta	
  stars.	
  	
  

•  This	
  is	
  not	
  tradi6onal	
  pre-­‐
detec6on	
  fusion!	
  	
  
–  The	
  detec6ons	
  must	
  be	
  

clustered	
  before	
  being	
  fused.	
  

Type	
  III	
  Configura6on	
  
Issues in Target Tracking & Data Fusion

Some Fusion Issues

Fusion Architectures

Type III Configuration: Pre-Detection Fusion

−1.5 −1 −0.5 0 0.5 1 1.5
x 105

−1.5

−1

−0.5

0

0.5

1

1.5
x 105

Synthetic example of
detections to be fused.
Covariances are random,
Pd = 50%, 25 sensors,
� = 5. There are four
“true” targets illustrated by
magenta stars.

This is not traditional
pre-detection fusion!

Peter Willett Issues in Target Tracking & Data Fusion
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•  Completely	
  centralized	
  associa6on	
  and	
  tracking.	
  For	
  realis6c	
  
mul6-­‐sensor	
  processing	
  must	
  allow	
  for	
  out-­‐of-­‐sequence	
  
measurements	
  (OOSMs).	
  	
  
–  can	
  happen	
  because	
  plots	
  arrive	
  via	
  network,	
  perhaps	
  datagram	
  

rou6ng	
  
–  op6mally:	
  recompute	
  en6re	
  solu6on	
  when	
  OOSM	
  arrives	
  –	
  avoid	
  this!	
  
–  exact	
  single-­‐gain	
  “corrector”	
  solu6on	
  for	
  single-­‐lag	
  case	
  [Bar-­‐Shalom]	
  

approximate	
  single-­‐gain	
  “corrector”	
  solu6on	
  for	
  mul6-­‐lag	
  case	
  [Bar-­‐
Shalom,	
  Mallick,	
  others]	
  	
  

–  exact	
  mul6-­‐lag	
  solu6on	
  based	
  on	
  “accumulated	
  state	
  density”	
  [Koch	
  &	
  
Govaers]	
  	
  

•  Sensors	
  need	
  not	
  (and	
  should	
  not	
  be	
  assumed	
  to)	
  be	
  
synchronized.	
  	
  

Type	
  IV	
  Configura6on	
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Theore6cal	
  Mul6-­‐sensor	
  Fusion	
  

no fusion 
of 
sensors	



Fusion of multiple sensors	



Performance	



Interesting Parameter	


(from Fred Daum, with permission) 
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Real	
  World	
  Mul6-­‐sensor	
  Fusion	
  

fusion of sensors	



no fusion of sensors	



Performance	



Interesting Parameter	


(from Fred Daum, with permission) 
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Theore6cal	
  Mul6-­‐sensor	
  Fusion	
  

Fusion of	


 tracks	



Fusion of measurements	



Performance	



Interesting Parameter	


(from Fred Daum, with permission) 
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Real	
  World	
  Mul6-­‐sensor	
  Fusion	
  
	
  Performance	



Interesting Parameter	



Fusion of measurements	



Fusion of tracks	



(from Fred Daum, with permission) 
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  Key	
  Real	
  World	
  Issues	
  for	
  Fusion	
  
•  residual	
  bias	
  between	
  sensors	
  
•  targets	
  detected	
  by	
  sensor	
  A	
  are	
  not	
  always	
  the	
  same	
  as	
  the	
  

targets	
  detected	
  by	
  sensor	
  B	
  
•  targets	
  resolved	
  by	
  sensor	
  A	
  are	
  not	
  always	
  the	
  same	
  as	
  the	
  

targets	
  resolved	
  by	
  sensor	
  B	
  
•  targets	
  tracked	
  by	
  sensor	
  A	
  are	
  not	
  always	
  the	
  same	
  as	
  the	
  

targets	
  tracked	
  by	
  sensor	
  B	
  
•  not	
  all	
  relevant	
  data	
  or	
  tracks	
  are	
  reported	
  by	
  all	
  data	
  links	
  
•  inconsistent	
  covariance	
  matrices	
  (of	
  data	
  or	
  tracks)	
  from	
  

sensors	
  

(from Fred Daum, with permission) 
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Track	
  Associa6on	
  vs.	
  Bias	
  
sensor a 
sensor b 

sensor a 
sensor b 

Bias MOU 
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•  The	
  goal	
  is	
  to	
  minimize	
  the	
  
“cost”	
  such	
  that	
  no	
  target	
  
gets	
  assigned	
  twice.	
  

•  For	
  two	
  sensors	
  the	
  
problem	
  is	
  rela6vely	
  easy	
  
and	
  there	
  exist	
  polynomial-­‐
6me	
  algorithms	
  for	
  it.	
  
–  we’ll	
  look	
  at	
  this	
  

•  For	
  more	
  than	
  two	
  sensors	
  
the	
  problem	
  is	
  NP-­‐hard	
  
–  relaxa6on	
  

T2T	
  Associa6on	
  (MOU)	
  
sensor a 
sensor b 

Costs 
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x1	
   x2	
   x3	
   false	
  

x1	
   c11	
   c12	
   c13	
   c10	
  

x2	
   c21	
   c22	
   c23	
   c20	
  

x3	
   c31	
   c32	
   c33	
   c30	
  

false	
   c01	
   c02	
   c03	
  

Se
ns

or
 1 

Sensor 2 

x1	
   x2	
   x3	
   false	
  

x1	
   c11	
   c12	
   c13	
   c10	
  

x2	
   c21	
   c22	
   c23	
   c20	
  

x3	
   c31	
   c32	
   c33	
   c30	
  

false	
   c01	
   c02	
   c03	
  

Se
ns

or
 1 

Sensor 2 

x1	
   x2	
   x3	
   false	
  

x1	
   c11	
   c12	
   c13	
   c10	
  

x2	
   c21	
   c22	
   c23	
   c20	
  

x3	
   c31	
   c32	
   c33	
   c30	
  

false	
   c01	
   c02	
   c03	
  

Se
ns

or
 1 

Sensor 2 

x1	
   x2	
   x3	
   false	
  

x1	
   c11	
   c12	
   c13	
   c10	
  

x2	
   c21	
   c22	
   c23	
   c20	
  

x3	
   c31	
   c32	
   c33	
   c30	
  

false	
   c01	
   c02	
   c03	
  

Se
ns

or
 1 

Sensor 2 

(etc.) T2T Assignment Costs 
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70	
   65	
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   25	
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   11	
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   49	
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Criterion Matrix 

0	
   0	
   0	
   0	
  

0	
   0	
   0	
   0	
  

0	
   0	
   0	
   0	
  

0	
   0	
   0	
   0	
  

Assignment Matrix 

Prices 

0	
  

0	
  

0	
  

0	
  

Initial state. 
Begin with first 
association and 
set price to one 
that maximizes 
the difference 
between gain 
and price 

Sensor 2 

Sensor 2 

Se
ns

or
 1 

Se
ns

or
 1 
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70	
   65	
   95	
   75	
  

75	
  	
   16	
   34	
  	
   25	
  

27	
   11	
   58	
   50	
  

67	
   49	
   22	
   69	
  

Criterion Matrix 

0	
   0	
   0	
   0	
  

1	
   0	
   0	
   0	
  

0	
   0	
   0	
   0	
  

0	
   0	
   0	
   0	
  

Assignment Matrix 

Prices 

0	
  

5	
  

0	
  

0	
  

Turns out to be 
second target. 
Repeat for second 
sensor-2 track. 

Sensor 2 

Sensor 2 

Se
ns

or
 1 

Se
ns

or
 1 
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70	
   65	
   95	
   75	
  

75	
  	
   16	
   34	
  	
   25	
  

27	
   11	
   58	
   50	
  

67	
   49	
   22	
   69	
  

Criterion Matrix 

0	
   1	
   0	
   0	
  

1	
   0	
   0	
   0	
  

0	
   0	
   0	
   0	
  

0	
   0	
   0	
   0	
  

Assignment Matrix 

Prices 

16	
  

5	
  

0	
  

0	
  

Turns out to be 
second sensor-1 
track. Repeat for 
second sensor-2 
track, which takes the 
first sensor-1 track. 

Sensor 2 

Sensor 2 

Se
ns

or
 1 

Se
ns

or
 1 
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Sensor 2 

70	
   65	
   95	
   75	
  

75	
  	
   16	
   34	
  	
   25	
  

27	
   11	
   58	
   50	
  

67	
   49	
   22	
   69	
  

Criterion Matrix 

Sensor 2 

0	
   0	
   1	
   0	
  

1	
   0	
   0	
   0	
  

0	
   0	
   0	
   0	
  

0	
   0	
   0	
   0	
  

Assignment Matrix 

Prices 

37	
  

5	
  

0	
  

0	
  

Turns the third 
sensor-2 track 
likes the first 
target-1 track 
more than the 
second target-2 
track does. 

Se
ns

or
 1 

Se
ns

or
 1 
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70	
   65	
   95	
   75	
  

75	
  	
   16	
   34	
  	
   25	
  

27	
   11	
   58	
   50	
  

67	
   49	
   22	
   69	
  

Criterion Matrix 

0	
   0	
   1	
   0	
  

1	
   0	
   0	
   0	
  

0	
   0	
   0	
   0	
  

0	
   1	
   0	
   0	
  

Assignment Matrix 

Prices 

37	
  

5	
  

0	
  

21	
  

The second target-2 
track has most gain 
possible, so back to 
that one. It turns out 
to like the 4th target-1 
track the most. Note 
that price is now 
21=49-(65-37). 

Sensor 2 

Sensor 2 

Se
ns

or
 1 

Se
ns

or
 1 
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70	
   65	
   95	
   75	
  

75	
  	
   16	
   34	
  	
   25	
  

27	
   11	
   58	
   50	
  

67	
   49	
   22	
   69	
  

Criterion Matrix 

0	
   0	
   1	
   0	
  

1	
   0	
   0	
   0	
  

0	
   0	
   0	
   1	
  

0	
   1	
   0	
   0	
  

Assignment Matrix 

Prices 

37	
  

5	
  

2	
  

21	
  

The 4th target-2 track 
gets assigned to the 
3rd target-1 track. 
Price is 2=50-(69-21). 

Sensor 2 

Sensor 2 

Se
ns

or
 1 

Se
ns

or
 1 
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•  There	
  can	
  be	
  biases	
  in	
  range,	
  6me	
  –	
  all	
  kinds	
  of	
  things	
  –	
  
but	
  most	
  oNen	
  they	
  come	
  to	
  the	
  fore	
  in	
  angle-­‐only	
  
sensing.	
  

•  Consider	
  (the	
  important)	
  applica6on	
  of	
  mul6-­‐sensor	
  
tracking	
  of	
  threats	
  from	
  mul6ple	
  satellites.	
  
–  Biases	
  here	
  are	
  roll	
  (φ),	
  pitch	
  (ρ)	
  and	
  yaw	
  (ψ).	
  

•  These	
  can	
  be	
  es6mated	
  by	
  using	
  targets	
  of	
  opportunity	
  
or	
  mul6ple	
  frames	
  of	
  data.	
  

•  There	
  are	
  3×Nsensor	
  biases	
  and	
  3×Ntarget	
  target	
  parameters	
  
to	
  es6mate,	
  and	
  2×Nsensor	
  ×Ntarget	
  observa6ons.	
  
–  For	
  2	
  sensors	
  we	
  would	
  need	
  at	
  least	
  6	
  targets.	
  

Bias:	
  Example	
  FPA	
  Sensors	
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Introduction Problem Formulation Simulations Simulations Summary

Description of the Scenarios (cont.)

Figure 3: Target and satellite trajectories

Belfadel, Bar-Shalom, and Willett Target State and Bias Estimation 16 / 18

Example	
  of	
  Bias	
  Es6ma6on	
  

Introduction Problem Formulation Simulations Simulations Summary

Description of the Scenarios (cont.)

The target modeled represents a long range ballistic missile with a
flight time of about 20 minutes.

0
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Figure 2: Target and satellite trajectories

Belfadel, Bar-Shalom, and Willett Target State and Bias Estimation 15 / 18

Introduction Problem Formulation Simulations Simulations Summary

Sample Average Target Position RMSE

The first estimation scheme was established as a baseline using
bias-free LOS measurements to estimate the target positions.

For the second scheme, we used biased LOS measurements but
without bias estimation.

In the last scheme, we used biased LOS measurements and we
simultaneously estimated the target positions and sensor biases.

Table 2: Sample average RMSE (m) for the target position and velocity, over 100 Monte
Carlo runs, for the 3 estimation schemes.

Scheme Position RMSE Velocity RMSE

1 107.44 5.16
2 47,161.10 25,149.32
3 494.49 19.55

Belfadel, Bar-Shalom, and Willett Target State and Bias Estimation 17 / 18

Scheme 1: No bias. 
Scheme 2: Ignore bias. 
Scheme 3: Estimate bias. 

•  For multi-frame single-target data there are 3×Nsensor biases and 6 target 
parameters to estimate (velocities!), and 2×Nsensor ×Nframe observations. 

•  For 2 sensors we would need at least 3 frames. 
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•  A	
  tradi6onal	
  target	
  evolves	
  according	
  to	
  a	
  Markov	
  model	
  	
  
–  means	
  that	
  p(x(t)|x(t	
  −	
  1),x(t	
  −	
  2),...)	
  =	
  p(x(t)|x(t	
  −	
  1)).	
  	
  
–  usual	
  model	
  is	
  x(t)	
  =	
  f(x(t	
  −	
  1),	
  ν(t))	
  where	
  f	
  is	
  some	
  func6on	
  and	
  
ν	
  is	
  noise.	
  	
  

•  The	
  observa6on	
  is	
  occluded:	
  	
  
–  roiled	
  by	
  noise	
  
–  missed	
  detec6ons	
  
–  false	
  alarms	
  
–  mul6ple	
  targets	
  	
  

•  That	
  is:	
  a	
  “hidden”	
  Markov	
  model	
  (HMM).	
  
•  Can	
  we	
  apply	
  our	
  target	
  tracking	
  knowledge	
  /	
  exper6se	
  

to	
  other	
  non-­‐tradi6onal	
  models?	
  	
  

“Hard”	
  Tools	
  for	
  a	
  “SoN”	
  Problem	
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X(t-1) X(t) X(t+1) X(t+2) 

Z(t-1) Z(t) Z(t+1) Z(t+2) 

state evolves according to Markov model 

observation at time t depends only on state at time t 
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•  Let’s	
  try	
  to	
  model	
  some	
  nefarious	
  plot	
  
•  Time	
  model	
  	
  

–  carrying	
  out	
  an	
  a,ack	
  requires	
  planning	
  
–  steps	
  of	
  the	
  plan	
  form	
  a	
  pa,ern	
  
–  pa,ern	
  of	
  ac6ons	
  can	
  be	
  modeled	
  using	
  a	
  Markov	
  chain	
  

•  Observa6on	
  model	
  	
  
–  terrorists	
  leave	
  detectable	
  clues	
  about	
  enabling	
  events	
  
–  clues	
  are	
  not	
  direct	
  observa6ons,	
  but	
  are	
  related	
  to	
  them	
  
–  the	
  states	
  in	
  the	
  Markov	
  chain	
  are	
  hidden.	
  

•  Clu,er	
  
–  refers	
  to	
  false	
  /	
  irrelevant	
  /	
  spurious	
  observa6ons	
  
–  example:	
  someone	
  has	
  bought	
  fer6lizer	
  
–  fer6lizer	
  bomb?	
  
–  actual	
  interest	
  in	
  farming?	
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Transactions are necessary in order for “plan” to evolve:  

Underlying the observation stream, a puzzle is  
being fit together.  
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Data Association
Modeling

Data Association and Tracking Solutions
Detectability Analysis

HMM with clutter and missed detections
Examples

HMM example: Truck bombing

S1

S2

S3

S4

S5 S6

S7

S8 S9

• S1: Selection of targets and reconnaissance

• S2: Set up cell A1

• S3: Set up cell A

• S4: Acquire money for operation

• S5: Gather resources

• S6: Expert arrives to assemble bombs

• S7: Target reconnaissance

• S8: Communications and final setup

• S9: Attack

This is based only on imagination and publicly available information:
S. Singh, H. Tu, J. Allanach, J. Areta, P. Willett, and K. Pattipati, “Modeling threats,” IEEE Potentials, 2004.

14/71

Truck bombing example: Really, too simple. 
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Graph evolves probabilistically from one state to the next:  

HMM’s observations are new elements being added 
to network.  

Data Association
Modeling

Data Association and Tracking Solutions
Detectability Analysis

HMM with clutter and missed detections
Examples

HMM and Data Association Modeling

Graph evolves probabilistically from one state to the next:

HMM’s observations are new elements being added to network.
13/71
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time 

Activity 1 Activity 1 Activity 1 Activity 2 Activity 2 

Clutter Clutter Clutter 

•  The observation stream (transactions) is from a (logical) OR-ing of component 
parts from several “targets” of interest and clutter. 

•  We seek a multi-target tracker that is appropriate for the job. 
•  We have developed a multi-Bernoulli filter (MBF) to extract it. 
•  We have begun to analyze “detectability.” 
•  In the future we will extend it to multiple activities and features. 

- Granstrom, Willett & Bar-Shalom, “Asymmetric Threat Modeling Using HMMs: Bernoulli Filtering and Detectability 
Analysis,” TSP 2016. 
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Data Association
Modeling

Data Association and Tracking Solutions
Detectability Analysis

Why?
Probability of HMM Detection Via Normal Approximation
False-Alarm Rate via Chernoff
What If?

Results: Detectability vs. Complexity
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Detection rate (D) at
10% false alarm rate
(FA) for daisy chain
HMMs with probability
of state transition PT ,
and number of states
NS . Each of the 12
subfigures shows the
D rate as a function of
the probability of HMM
observation PD and
the probability of
clutter observation PFA.
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20 states 30 states 40 states 50 states 

Detec6on	
  rate	
  (D)	
  at	
  
10%	
  false	
  alarm	
  rate	
  
(FA)	
  for	
  daisy	
  chain	
  
HMMs	
  with	
  
probability	
  of	
  state	
  
transi6on	
  PT	
  ,	
  and	
  
number	
  of	
  states	
  N.	
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•  Mul6-­‐User	
  Informa6on	
  Theory	
  
–  typicality:	
  entropy	
  &	
  capacity	
  
–  MAC,	
  broadcast,	
  CEO	
  problem	
  

•  Case	
  studies	
  
–  scan	
  sta6s6cs	
  for	
  sensor	
  networks	
  
–  consensus	
  in	
  sensor	
  networks	
  
–  data	
  fusion	
  with	
  intermi,ent	
  detec6ons	
  
–  quan6zed	
  es6ma6on:	
  a	
  note	
  
–  decentralized	
  learning	
  
–  decentralized	
  es6ma6on	
  with	
  MOU	
  

•  Data	
  Fusion	
  for	
  Tracking	
  
–  architectures	
  
–  bias	
  
–  track	
  fusion	
  

•  Example	
  of	
  Applica6on	
  of	
  Hard	
  Methods	
  to	
  a	
  SoN	
  Problem	
  

Summary	
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