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Outline

A Communications Perspective on Data Fusion
— multi-user information theory
Data Fusion for Detection & Estimation
— scan statistics for sensor networks
— consensus in sensor networks
— data fusion with intermittent detections
— quantized estimation: a note
— decentralized learning
— decentralized estimation with MOU

Data Fusion for Tracking

— architectures

— bias

— track fusion

Mapping a “Soft” Problem to “Hard” Terms
— an example
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Multi-Sensor Information Theory

 What are the bounds?
e Basic IT motivated by “typicality”
— Source coding, channel capacity, rate-distortion theory

e Capacity for networks
— Multi-Access Channel (MAC)
— Broadcast Channel
— General Networks

e Distributed Coding

— Noisy and Noiseless
e Distributed Inference (CEO Problem)
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* Consider a discrete iid source {X;} with probabilities p;=Pr(X;=x)

* Suppose we have X"={X,X,, ..., X}
— On average there will be np; x,” s, np, X, s, etc.: Pr(“ABBA”)=p,?p,>
— then

m Ep]log pj n
Pr(X") = l_[p] _9 _ ) HX) b e H(X)=2pj log(l/pj)

j=1

e Typical X" is one for which

H(X)-¢e< %log(p(X”)) = %Elog(p(Xi)) <H(X)+¢

— LLN says probability that X" is typical is 1-¢, small € as you like
— “Only typical X’ s ever happen.”
— Typical set has 2" elements, each with probability 2-"HX)

NATO STO IST-155, Willett Slide 4



COLLABORATION SUPPORT OFFICE

Entropy

e Source coding scheme:

/]

» code as “0” + nx (H(X)+¢) bits

N
l » code as “1” + nxlog(]|X]) bits
* Code length per source symbol is

[ = l[(1_g)(1+nH(X)+ng)]+g(1+nm) ~H(X)
n
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Information

« Informationis I(X;Y) = H(X)-H(X|Y)
« Communication channel:

jointly typical pairs, 2"HXY) atypical Yn

atypical X"
//\\ typical Y"
typical Xn 2rH)
2nH(X)
code by
data picking
source

an X"

choose these
randomly,
according to p(x) -

X" n symbols of X Yn: n symbols of Y
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Xn

Yn

organization

number of typical X" s: 2nH(X)

number of typical Y s: 2nH(Y)

number of jointly-typical (X",Y") pairs: 2"H(X.Y)
code procedure:

— look at our Y", and if jointly-typical with
exactly one X", then we decode to that,
otherwise error

but X" each is joined to 2nHXY)-HV) yn” g
so use only a fraction 2n(HY)-HXY) of the 2nH(X)
available X" codewords

then we have left 2nHX)2n(HY)-HX,Y)) = 2ni(X;Y)
typical X" codewords left
1(X;Y)=H(X)+H(Y)-H(X,Y) defines the rate we can
send data

this information is the “capacity”
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Capacity

* capacity: C=max, {l(X;Y)}
— means that you choose a code to match the channel

* in the Gaussian case
C=B*log(1+P/N,B)
where B is the bandwidth and P is the transmitted power

e parallel cooperative Gaussian channels: water-filling

noise
level
per
channel
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messages < W2 X

Multi-Access Channel (MAC)

~
W»]—> X1

- Wm—> xm

R(S) = I(X(8);Y| X(5)) VS

where

Sis a subset of the users {1,2, ... ,m} and S¢is its complement
R(S) is the sum of the rates of the usersin S

the information uses a product (independent) distribution of X(S)
this is exact region, not a bound on the region
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MAC Region for Two Users
<I(X;;Y|X,)
< (XY | X))

R +R, <I(X,,X,;Y)

> R
L, |

* source 2 starts at R,~0
— source 2 is easy to decode, so X,

is known
— then source 1 can transmit at B =I1(X,,X,;Y)-4
A=|(X1,Y|X2) =I(X,, X,;Y)-I(X;;Y [ X))
e now source 2 increases its rate upto B =H()-HY | X,,X,)-(HY | X,)-H(Y | X,, X,))
— source 2 can still be decoded =HY)-H(Y|X,)
(first) while R,<I(X,;Y) = 1(X;T)

- up to that point X, is just “noise”
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Gaussian MAC

i CDMA \
| P
- — 1 _1
_ / R, = I(X ;Y | X5) /210g(1+N)
|~ R, SI(X2§Y|X1)=%10g(1+%)
TDMA — | N
R] +R2 SI()(l’)(z;yv)=/210g(l+ N )

/ i
FDMA
2 aN
frequency division _
{-a) log(1+L)

multi-access is
actually not so bad

Slide 11
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Broadcast Channel

Wi Xy—— W,
W, k: X X, W,
Wm/ Xm—’ Wm

« exact bound not known in general, but “degraded broadcast channel” is

__________________________________________

U—';X—'Y1 Y2i

« if Y, can decode W,, so can Y,: R,<l(U;Y,)<l(U;Y,)

« then R,<I(U;Y,)<I(U;Y,), so Uis known at Y,
« if U is demodulated, then R;<I(X;Y,|U)
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General Networks

1
s, jese

O 1(X(8);Y(5)| X(59))

This is an “outer bound,” not in general tight for achievable region.
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The Sleplan-WoIf Problem

* distributed noiseless source coding [1973]
— for dependent sources

— one source can help the other reduce its rate

) ¥hand COCE! (I
decode Eamme (X1,X2)

X, — Kelelo[:1y

e clearly R;>H(X;) & R,>H(X,|X;)
e clearly R,>H(X;) & R;>H(X; |X,)
e triangular region is filled in by
> R, time-sharing
H(X4|X2)  H(X;) * Ri#R>H(X,X,)

H(X,X4)
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Distributed Inference: The CEO Problem

e Berger, Zhang & Viswanathan [1996]

* Viswanathan & Berger [1997]

e (Oohama [1998]

e Zamir & Berger [1999]

* Chen, Zhang, Berger & Wicker [2004]

* Prabhakaran, Tse & Ramchandran [2004]

e everything is
Gaussian

e everything is
independent

e we have an MSE
criterion on q

estimate O
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1. (o Do.N
R(D) = —log"| =2 - — .
2 D | DoyN -o,0” + Do

e there are vector versions of this
11 . . 14/ . .
e there are successive refinement versions of this
- | have not seen a Kalman filter involved
e | am not aware of a data-association version
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Data Fusion for Decision-Making
and Estimation: Some Topics

* Scan statistics for sensor networks

* Consensus in sensor networks

e Data fusion with intermittent detections
* Quantized estimation: a note

* Decentralized learning

* Decentralized estimation with MOU
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Scan Statistics for Sensor Networks

target

e o o o L)
[ ]
L
L)
>

source detectable zone

e Barrier sensor network: a narrow but long sensor
band along coastline.
— How to effectively fuse the binary local decisions in the
fusion center?
* Angle dependent reflection
— Only a small area of sensors can reliably detect

- Song, Willett, Glaz & Zhou, “Active Detection With A Barrier Sensor Network Using A Scan Statistic,” JOE 2012. ‘
- Glaz, Guerriero & Sen, “Approximations for a three dimensional scan statistic,” J. Comp. in App. Prob., 2009. }4
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Poisson Field

scanning window
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system-level false alarm rate
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Scan statistics have broad application:

* epidemiology

* ecology

* quality control and reliability

* intrusion detection
The key ingredient to scan statistics is
that the threshold can be set
analytically and explicitly.

* admittedly, the formula is complicated
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Consensus in Sensor Networks

* Consider peer-to-peer communication
— as opposed to “parallel” or “serial” topology

e Each sensor has its own observation and sends its
information to its “neighbors” defined by the graph

s =z ™ s, = Ws,_;
* Require obvious condition on eigenvalues
of W and that it be doubly-stochastic

- Braca, Marano, Matta & Willett, “Consensus-Based Page’s Test in Sensor Networks,” Sig. Proc. 2009.
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Consensus for Quickest Detection

e Consider at all sensors j a switch in distribution:

fo(m) 115,225, Tng—1,

N\
fl(x) : Tng,js Lng+1,55¢ -
o .
Require [ log ftea)

Sn,l Sn—l,l & fo(zn,1)

o2 1.2 log ’f";Ei:’z%

. =W, ) +M W,
SnaM Sn—.l,M fl(a:n )
K log # @)

* For example, pair-wise averaging

_ T
W, —T_ (up — up)(ux — uy)
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Example

 Change from N(O 1) to N(O, 1 032) 10 sensors

— Ide: IC ntraliz dSytm
M — Running

|

‘1“\"’\ L Wt '1“

1‘\

I I\‘: AN, k 1 \'\1\ 'y, M‘\ '

0

e Centrah ed

= Centralized (appr.)
O Running consensus

¥ Bank

Detection delay
_o:n
T

change of distribution-|

500
False alarm rate

Consensus / Page is asymptotlcally optlmal
(compared to centralized) and much better than an

OR rule (bank of Page tests)
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Intermittent Detections

hits clustered when target
aspect and propagation
are favorable

Py

receiver a

e =

source .
receiver b
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Track Management Architecture

Sensor Fusion Center
a,-8,-83-8, . Confirm

Track Initiation
Track
b,-b,-bs-b,

Qa1'b1'01'd1'az'b2'02'. ' Track U date - TI"CZCk
Ci-CrCyC, Time ordered & Estimate
measurement
sequence Track | Terminate
Termination Track

Single KF update
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Track Termination

e Goal: quickest detection of change in measurement
distribution from a true track (/,) to a false track (/)

* Page test
— Proven global optimality for i.i.d. case and some Markov models
— Some recent asymptotic optimality results for HMMs (Fuh 2003), not
applicable for this case
— A sequential test that minimizes delay in detection of a distribution
change at a given false alarm rate

k-1
5, =In Pr{5k|51k 1,HO} ,
Pr{o, |0FLH )

=max(c,_,+s,,0)

Blanding, Willett, Coraluppi & Bar-Shalom, “Multisensor Track Management for Targets with Fluctuating SNR,” TAES 2009.
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* Page test example:
— unit Gaussian with mean +/-0.2
— can you see it?

CUSUM
change point

data

/

W
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Page Test

T T T T
—— Page Test m
16| O — K or fewer from 3 scan cycles
O Korfewer from 4 scan cycles
1400 0O Kor fewer from 5 scan cycles -

* Simulation methodology:

— Track termination tests begin
on first measurement after
track confirmation

— 10* simulations under H,
— 10% simulations under H,

e Surprising result:
— Page test is not globally

optimal G : r r
. . L. 0 50 100 150 200 250
— LLR innovations are not I.I.d. Average duration of true tracks(scan cycles)

Average time to terminate false tracks(scan cycles)

Track termination performance (4 sensors)
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Shiryaev Test
 Optimum quickest detection when the problem is formulated
using a Bayesian approach (in the i.i.d. case)
— a priori probability of change time £_:
Prik, =k} o k=0
(I-my)p(1-p) k>0

— Using Bayes rule, a posteriori change probability:

. 7+ (=7, )pIPr{S, |8}, Hy}
T+ = )PP, 160 o (=1, 1= p)Pr8, 157}

— The Shiryaev stopping rule becomes:
7T
k

l—ﬂ'k

g, =In

Pr{d, |6k, H,}
Pr{o,|0FLH }

NATO STO IST-155, Willett Slide 28
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Track Termination Tests
—e— Page Test B

16 || —— K/4 scan cycles ]
O K/5scan cycles
—s%— Shiryaev Test

e Sequential tests
— Page test
— Shiryaev test

e Rule-Based
— K/N rule

e Conclusion:

— Shiryaev test
performs best

Average time to terminate false tracks(scan cycles)

0 50 100 150 200 250
Average duration of true tracks(scan cycles)

Comparison of average track duration
for different track termination rules
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A Note on Quantized Estimation
T1
S -z; S » ltis fairly clear that the estimation
l performance here is limited by the
—+— quantization fineness and does not
Z, improve beyond a certain point with n.
N « Paradoxically, the lower the sensor
- LA B S noise the worse this behavior is.
24 * Luo’s solution is to use a randomized
— l — quantizer.

Pr(u =) PrUE)

a
=
-
=
——
=
=
-

v

4_3N oe®®
a
x
—
g |
e
v

- Luo, “Universal Decrentalized Estimation in a Bandwidth constrained Sensor Network,” T-IT 2005.
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Decentralized Learning

* Suppose one has a repository of
training data and a collection of
local agents.

* As opposed to our usual decision-
making based on distributed
observations, let us here assume
that all decision-makers observe the
same datum but that the
“database” of training data is
distributed.

* Explore extreme case: each sensor
has only only training datum.

* Application here is regression.
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Decentralized NN Learning

* Nearest-neighbor learning gets ighored sometimes.

— it can be shown that the NN decision is (asymptotically) no
worse than twice the optimum, 2P(e)

— with k-NN we have P(e) goes to (1+1/k)P"(e)
* There is a similar suite of results with NN regression.
— MMSE asymptotically no worse than twice MMSE”

* How do we achieve this?
— transmission rule like with censoring
— sensor i transmits after delay proportional to o, d(X,X))
— as long as ., is proportional to k,n this works
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Blum & Sadler’s Access Rule

b6l ,
-axis
NN access Y
Y
120 |
v
NN access o)
)72 E },(k,n)m vee }I(Z,n)m Kl,n)m
8 FC
(@)
|| X0 - Xo
v
NN access
Y. > ® >
] X, X-axis
First 5 neighbors

When k,, agents have been heard from, FC sends broadcast to stop.

- Blum & Sadler, “Energy efficient signal detection in sensor networks using ordered transmissions,” TSP 2008.
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10 ' A S AR ' A S AP A

o [—e—nN
»ioo] —B8— NN quant
1| —s7— BSC (coherent)

| e ||« The various lines

| =2 uncoded (noncoherent)| | here refer to

I different schemes
to communicate
the agents’
regression data to
the FC.

* The number of

Sensors is n.

MSE-MMSE

10" 10° 10° 10"

- Marano, Matta & Willett, “Nearest-neighbor distributed learning by ordered transmissions,” TSP 2013.
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Decentralized Estimation with
MOU

e bandwidth constraint:

— sensors each transmit one
measurement

— which is the most informative?

* here we discuss k-mos
— “modulus order statistic”

— transmit the kt"-nearest
measurement to where the target
is expected to be

- Braca, Guerriero, Marano, Matta & Willett, “Selective Measurement Transmission in Distributed Estimation with DA,” TSP 2010.
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Data association likelihood for frame Z={z,,z,, ... ,z.}, probability of
detection P, clutter intensity A, observation volume V and likelihood
model p(z|0) (this is commonly a Gaussian pdf centered at 6).

P10 == o () wtn 03tz 10

M(n)=()LV)n e_l%

Y, Target observation

Clutter (Gaussian)
~ (Uniform) +
» W 0 Clutter
M N8 0 (Uniform) +
L | < ® 90 +
Sensor n
/'.
+

v

True target position o +
(Gaussian)
K (Tcgl;i;as‘:gr?; position 0 Yn ;I'g;%z; ?;bns)ervation
1-Dimensional Gate (1D) 2-Dimensional Gate (2D)
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Sensor 1

3-MOS

+1+ (1) +]

Note that the
Sensors
corroborate one
Sensor 2 ' o Estl\i/lr:aptor another, for.

i case that 0 is far
' away from
expected
location 6,

1-MOS (NN)

Sensorn .«
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. A Fisher Information
| |analysis suggests that
when the clutter is high
it is better to transmit a
higher k-mos.

@ | | ' ' Apparently, however,
°-8“®\k=1 1 Ithe probability that a
go.e- | && ... 4 lgiven k-mos is target
%0.4- k=2 Og | S originat?d ishalways
—x-"-x- x-x-Q highest for the nearest
o 'k= %‘ggﬁ%ﬁ*@%ﬁ%ﬂﬂm neighbor.
0 k_4 5

m
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Low Clutter

fX (x16,m)

Probability densities of various k-mos
for the clutter-only situation. Low
clutter is three gated contacts, and
high clutter is ten gated contacts.

fX (x16,m)

Low Clutter

target position 0 |

Probability densities of various k-mos
for the target-present situation (true 6
is unity). Note the appearance of a
“bump” around the true 6 for the high-
clutter case — this is why a higher k-
mos may be a better choice.
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Low Clutter -

NN Low Clutter - 4- NOS

High Clutter - 4- NOS

Probability densities of various k-mos

for the target-present situation and
two dimensions. Note that the “bump”
at the true 0 persists.

organization
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Probability densities of various k-mos
for the clutter-only situation and two-
dimensional observations.

Low Clutter - NN Low Clutter - 4-NOS

High Clutter - NN High Clutter - 4-NOS
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Data Fusion for Tracking

 Some slides from “Industrial Strength Real World
Multi-Sensor Fusion” by Fred Daum (May 2" 2016).

* Track-to-Track (T2T) association
— in the two-sensor case it is relatively easy
— auction algorithm

* Bias estimation

— example of passive-sensor tracking with angle biases
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Taxonomy of Fusion for Tracking

Type | configuration:
— Single sensor situation, which serves as a baseline.

* Type Il configuration:

— Single sensor tracking followed by track to track association and
fusion. Subtypes include with/without memory, and with/
without feedback.

Type Il configuration:

— Measurement to measurement association across sensors with
all the measurements from the same time (the sensors are
assumed perfectly synchronized), i.e., static association,
followed by central dynamic association and tracking.

Type IV configuration:
— Completely centralized association and tracking.

NATO STO IST-155, Willett Slide 42
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Type | Configuration

e Single sensor situation.

* |In a multisensor situation this corresponds to reporting
responsibility (RR). Each sensor operates alone and has
responsibility for a certain sector of the surveillance
region — no fusion of the data (measurements or tracks)
from the multiple sensors is done.

* Astargets move from one sector to another, they are
handed over — handoff —in a manner that depends on
the system. Generally, the mechanism is to assign
responsibility to the sensor with the highest expected
accuracy, although workload and communication
constraints can also play a role.

NATO STO IST-155, Willett Slide 43



COLLABORATION SUPPORT OFFICE

Type Il Configuration

* Each sensor maintains its own (distributed) track.
— this is often the preferred solution

— solution is robust to failure and relatively light in its
communication requirements

* [ssues:
— sensor registration & bias
— track-to-track association (T2TF)
— correlation between distributed tracks?
— fused covariance?
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Type Il Configuration

e Synthetic example of 5
detections to be fused.

— Covariances are random, it

— Pd =50%, 25 sensors, A = 5.

— There are four “true” targets
illustrated by magenta stars. or

0.5

* This is not traditional pre-
detection fusion!

— The detections must be
clustered before being fused. . ‘ 1 ‘ j ‘

Ak
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Type IV Configuration

 Completely centralized association and tracking. For realistic
multi-sensor processing must allow for out-of-sequence
measurements (OOSMs).

can happen because plots arrive via network, perhaps datagram
routing

optimally: recompute entire solution when OOSM arrives — avoid this!
exact single-gain “corrector” solution for single-lag case [Bar-Shalom]
approximate single-gain “corrector” solution for multi-lag case [Bar-
Shalom, Mallick, others]

exact multi-lag solution based on “accumulated state density” [Koch &
Govaers]

e Sensors need not (and should not be assumed to) be
synchronized.

NATO STO IST-155, Willett Slide 46

organization

COLLABORATION SUPPORT OFFICE




T t
OV SCIENC

organization

COLLABORATION SUPPORT OFFICE

Theoretical Multi-sensor Fusion

Performance

Fusion of multiple sensors

no fusion
of
Sensors

Interesting Parameter -
(from Fred Daum, with permission)
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Real World Multi-sensor Fusion

Performance

no fusion of sensors

fusion of sensors

Interesting Parameter -
(from Fred Daum, with permission)
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Theoretical Multi-sensor Fusion

Performance

Fusion of measurements

Fusion of
tracks

Interesting Parameter -
(from Fred Daum, with permission)
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Real World Multi-sensor Fusion

Performance

Fusion of tracks

Fusion of measurements

Parameter | -
(from Fred Daum, with permission)
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Key Real World Issues for Fusion

* residual bias between sensors

e targets detected by sensor A are not always the same as the
targets detected by sensor B

e targets resolved by sensor A are not always the same as the
targets resolved by sensor B

* targets tracked by sensor A are not always the same as the
targets tracked by sensor B

* not all relevant data or tracks are reported by all data links

* inconsistent covariance matrices (of data or tracks) from
sensors

(from Fred Daum, with permission)
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Track Association vs. Bias

Bias MOU
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T2T Association (MOU)

 The goal is to minimize the
“cost” such that no target
gets assigned twice.

* For two sensors the
problem is relatively easy
and there exist polynomial-
time algorithms for it.

— we’ll look at this

e For more than two sensors
the problem is NP-hard

— relaxation

Costs
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Crlterlon Matrix Prices
Sensor 2
70 75 0
g0 s s
s 75 16 34 25 0
g 27 11 58 50 0
°E 49 22 69 0
Assignment Matrix initial state.
o jo Jo Jo ot rice o o
- set price to one
5 O 0 0 0 that maximizes
S :
€ 0 0 0 the dlfferen(_:e
%) between gain
0 0 0 0 and price
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Criterion Matrix Prices
Sensor 2
o Jes o5 |15 o
5 75 16 34 25 >
7]
§ 27 11 58 50 0
67 49 22 69 0
Assignment Matrix
Sensor 2
- ____ Turns out to be
5 1 second target.
2 Repeat for second
S0 0 0 0 sensor-2 track.
0 0 0 0
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Crlterlon Matrix Prices
Sensor 2

7 7 16
7o e (s (15 16
S 75 16 34 25 5
(7]
f‘; 27 11 58 50 0

67 49 22 69 0

Assignment Matrix

Sensor 2 Turns out to be
_-__ Seoong Sonser
track. Repeat for
second sensor-2

0 0 0 track, which takes the
first sensor-1 track.

Sensor 1
o O =

0 0 0
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Criterion Matrix Prices
Sensor 2
37
7o (s (s 75 EN
5 75 16 34 25 5
(7]
‘§ 27 11 58 50 0
67 49 22 69 0
Assignment Matrix Turns the third
Sensor 2 sensor-2 track
likes the first
,__-_ target1 track
s 1 more than the
(7]
< 0 0 0 0 second target-2
71 track does.
0 0 0

organization
CcCSO
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Criterion Matrix Prices
Sensor 2
37
7o e o5 (15 EN
s 75 16 34 25 5
&
3 27 11 58 50 0
67 49 22 69 21
Assignment Matrix The second target-2
Sensor 2 track has most gain
__- et e, 1t e o
- that one. It turns out
5 1 0 to like the 4t target-1
(/)]
€ 0 0 0 track tr_]e rpost. Note
%) that price is now
0 1 0 0 21=49-(65-37).
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Criterion Matrix Prices
Sensor 2
37
o s[5 s EN
5 75 16 34 25 5
(/)]
§ 27 11 58 50 2
67 49 22 69 21
Assignment Matrix
Sensor 2
The 4% target-2 track
- __- gets assigned to the
§ 1 0 3d target-1 track.
S o 0 0 1 Price is 2=50-(69-21).
(/5]
0 1 0 0
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Bias: Example FPA Sensors

There can be biases in range, time — all kinds of things —
but most often they come to the fore in angle-only
sensing.
Consider (the important) application of multi-sensor
tracking of threats from multiple satellites.

— Biases here are roll (¢), pitch (p) and yaw ().

These can be estimated by using targets of opportunity
or multiple frames of data.

There are 3xN,,, biases and 3xN,, .., target parameters
to estimate, and 2xN XNarger ObSErvations.

— For 2 sensors we would need at least 6 targets.

sensor
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Example of Bias Estimation

* Target

x108
10

o Sensors

Z-axis(m)
[6;]

Y-axis(m) ) ) X-axis(m)

Scheme Position RMSE  Velocity RMSE Scheme 1: No bias

; 4;2214‘:0 25?1532 Scheme 2: Ignore bias.
3 494.49 19.55 Scheme 3: Estimate bias.

« For multi-frame single-target data there are 3xN_ ., biases and 6 target
parameters to estimate (velocities!), and 2xN,..r XN¢ame ObSErvations.
« For 2 sensors we would need at least 3 frames.
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“Hard” Tools for a “Soft” Problem

A traditional target evolves according to a Markov model
— means that p(x(t) | x(t - 1),x(t - 2),...) = p(x(t) | x(t - 1)).

— usual model is x(t) = f(x(t — 1), v(t)) where fis some function and
V iS hoise.

 The observation is occluded:
— roiled by noise
— missed detections
— false alarms
— multiple targets

 Thatis: a “hidden” Markov model (HMM).

* Can we apply our target tracking knowledge / expertise
to other non-traditional models?
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state evolves according to Markov model

observation at time t depends only on state at time t
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e Let’s try to model some nefarious plot

Time model
— carrying out an attack requires planning
— steps of the plan form a pattern
— pattern of actions can be modeled using a Markov chain

* Observation model
— terrorists leave detectable clues about enabling events
— clues are not direct observations, but are related to them
— the states in the Markov chain are hidden.

Clutter

— refers to false / irrelevant / spurious observations
— example: someone has bought fertilizer

— fertilizer bomb?

— actual interest in farming?
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Transactions are necessary in order for “plan” to evolve:

Observation types

O Person
Place
Object - % —
A ’ ‘ — 8 4—)p Communication
‘ } Trust
<+ > Travel
es

Underlying the observation stream, a puzzle is
being fit together.

f, (citizenship) £, (skills)

Entities
/\ f, (country) Featur
Travel ° fz( tat )
pla
£; (city)
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e S;: Selection of targets and reconnaissance ,

o Sg: Expert arrives to assemble bombs
o Sy: Setup cell Ay _

e S7: Target reconnaissance
o S3:Setupcell A o _

o Sg: Communications and final setup

e 54: Acquire money for operation o So: Attack
9.

o Sy: Gather resources

Truck bombing example: Really, too simple.
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Graph evolves probabilistically from one state to the next:

T T T T
N N N n
N N 1 I
N I I I
N M M I
N I M I
N M M M
N Sy N Sy N S3 N Sy
h h h h
N 1y I "
- - Al Al
A A \YJ \Y

HMM'’s observations are new elements being added
to network.

plo|x|e|x|e|d|x|2|o|S|o|x|2|o|S|d|@|@|0]|x]|X

v

“Null” Gated false True HMM Missed HMM  Gated false
(Irrelevant alarm (event) detection detection alarm (event)
event) “Noise only” B “HMM active”
<4 hypothesis "n‘ hypothesis >
0
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time ——
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Activity 1

« The observation stream (transactions) is from a (logical) OR-ing of component
parts from several “targets” of interest and clutter.

+ We seek a multi-target tracker that is appropriate for the job.

* We have developed a multi-Bernoulli filter (MBF) to extract it.

Activity 2

« We have begun to analyze “detectability.”

* In the future we will extend it to multiple activities and features.

- Granstrom, Willett & Bar-Shalom, “Asymmetric Threat Modeling Using HMMs: Bernoulli Filtering and Detectability

Analysis,” TSP 2016.

NATO STO IST-155, Willett

Activity 1

Activity 2 Activity 1

SI fde 69



D
2

SCIENCE AND TECHNOLOGY ORGANIZATION Duatbut.
COLLABORATION SUPPORT OFFICE

20 states 30 states 40 states 50 states

Pr =03, Ng =30 Pr=03, Ny =40
0.9 . ]
0.7, 7| 7
<05 £0.5) £o5
0.3 0.3 03

3. | Detection rate (D) at
i AN Nl | 10%false alarm rate
- - : : A= : . (FA) for daisy chain
% | | | HMMs with

probability of state
transition PT, and
number of states .

01 03 05 07 09 01 03 05 07 09 01 03 05 07 09 01 03 05 07 09
Pra Pra Pra Pra

0.9 0.9] 0.9 0.9

0.7] 0.7] 0.7] 0.7]

slow

0.1 0.1 0.1 0.1
01 03 05 07 09 01 03 05 07 09 01 03 05 07 09
Pra Pra Pra

01 03 05 07 09
Pra

Detectability vs. Complexity & Speed
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Summary

 Multi-User Information Theory
— typicality: entropy & capacity
— MAUC, broadcast, CEO problem
* (Case studies
— scan statistics for sensor networks
— consensus in sensor networks
— data fusion with intermittent detections
— quantized estimation: a note
— decentralized learning
— decentralized estimation with MOU
e Data Fusion for Tracking
— architectures
— bias
— track fusion
 Example of Application of Hard Methods to a Soft Problem
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