

Issues and Approaches for Data Fusion

Peter Willett

University of Connecticut

Outline

- A Communications Perspective on Data Fusion
 - multi-user information theory
- Data Fusion for Detection & Estimation
 - scan statistics for sensor networks
 - consensus in sensor networks
 - data fusion with intermittent detections
 - quantized estimation: a note
 - decentralized learning
 - decentralized estimation with MOU
- Data Fusion for Tracking
 - architectures
 - bias
 - track fusion
- Mapping a "Soft" Problem to "Hard" Terms
 - an example

Multi-Sensor Information Theory

- What are the bounds?
- Basic IT motivated by "typicality"
 - Source coding, channel capacity, rate-distortion theory
- Capacity for networks
 - Multi-Access Channel (MAC)
 - Broadcast Channel
 - General Networks
- Distributed Coding
 - Noisy and Noiseless
- Distributed Inference (CEO Problem)

- Consider a discrete iid source {X_i} with probabilities p_j=Pr(X_i=x_j)
- Suppose we have Xⁿ={X₁,X₂, ..., X_n}
 - On average there will be $np_1 x_1' s$, $np_2 x_2' s$, etc.: Pr("ABBA")= $p_A^2 p_B^2$
 - then

NATO

OTAN

$$\Pr(X^{n}) \approx \prod_{j=1}^{m} p_{j}^{np_{j}} = 2^{n \sum_{j=1}^{n} p_{j} \log(p_{j})} = 2^{-nH(X)} \quad where \quad H(X) = \sum_{j=1}^{n} p_{j} \log(1/p_{j})$$

• Typical Xⁿ is one for which

$$H(X) - \varepsilon \leq \frac{-1}{n} \log \left(p(X^n) \right) = \frac{-1}{n} \sum_{i=1}^n \log \left(p(X_i) \right) \leq H(X) + \varepsilon$$

- LLN says probability that Xⁿ is typical is 1- ϵ , small ϵ as you like
- "Only typical X's ever happen."
- Typical set has $2^{nH(X)}$ elements, each with probability $2^{-nH(X)}$

Entropy

• Code length per source symbol is

$$\overline{L} = \frac{1}{n} \Big[(1 - \varepsilon) \big(1 + nH(X) + n\varepsilon \big) \Big] + \varepsilon \big(1 + nm \big) \approx H(X)$$

Information

- Information is I(X;Y) = H(X)-H(X|Y)
- Communication channel:

- number of typical Yⁿ' s: 2^{nH(Y)}
- number of jointly-typical (Xⁿ,Yⁿ) pairs: 2^{nH(X,Y)}
- code procedure:
 - look at our Yⁿ, and if jointly-typical with exactly one Xⁿ, then we decode to that, otherwise error
- but Xⁿ each is joined to 2^{n(H(X,Y)-H(Y))} Yⁿ's
- so use only a fraction 2^{n(H(Y)-H(X,Y))} of the 2^{nH(X)} available Xⁿ codewords
- then we have left $2^{nH(X)}2^{n(H(Y)-H(X,Y))} = 2^{nI(X;Y)}$ typical Xⁿ codewords left
- I(X;Y)=H(X)+H(Y)-H(X,Y) defines the rate we can send data
- this information is the "capacity"

Capacity

- capacity: C=max_{p(x)}{I(X;Y)}
 - means that you choose a code to match the channel
- in the Gaussian case C=B*log(1+P/N₀B)

where B is the bandwidth and P is the transmitted power

parallel cooperative Gaussian channels: water-filling

Multi-Access Channel (MAC)

where

- S is a subset of the users {1,2, ...,m} and S^c is its complement
- R(S) is the sum of the rates of the users in S
- the information uses a product (independent) distribution of X(S)
- this is exact region, not a bound on the region

MAC Region for Two Users

$$\begin{split} R_{1} &\leq I(X_{1}; Y \mid X_{2}) \\ R_{2} &\leq I(X_{2}; Y \mid X_{1}) \\ R_{1} + R_{2} &\leq I(X_{1}, X_{2}; Y) \end{split}$$

- source 2 starts at R₂~0
 - source 2 is easy to decode, so X₂
 is known
 - then source 1 can transmit at A=I(X₁;Y|X₂)
- now source 2 increases its rate up to B
 - source 2 can still be decoded (first) while R₂<I(X₂;Y)
 - up to that point X₁ is just "noise"
- $B = I(X_1, X_2; Y) A$ = $I(X_1, X_2; Y) - I(X_1; Y | X_2)$ $B = H(Y) - H(Y | X_1, X_2) - (H(Y | X_2) - H(Y | X_1, X_2))$ = $H(Y) - H(Y | X_2)$
 - $= I(X_2;Y)$

Gaussian MAC

Broadcast Channel

• exact bound not known in general, but "degraded broadcast channel" is:

- if Y_2 can decode W_2 , so can Y_1 : $R_2 < I(U;Y_2) < I(U;Y_1)$
- then $R_2 < I(U; Y_2) < I(U; Y_1)$, so U is known at Y_1
- if U is demodulated, then $R_1 < I(X;Y_1|U)$

This is an "outer bound," not in general tight for achievable region.

The Slepian-Wolf Problem

- distributed noiseless source coding [1973]
 - for dependent sources
 - one source can help the other reduce its rate

Distributed Inference: The CEO Problem

- Berger, Zhang & Viswanathan [1996]
- Viswanathan & Berger [1997]
- Oohama [1998]
- Zamir & Berger [1999]
- Chen, Zhang, Berger & Wicker [2004]
- Prabhakaran, Tse & Ramchandran [2004]

- everything is Gaussian
- everything is independent
- we have an MSE criterion on q

$$R(D) = \frac{1}{2} \log^{+} \left(\frac{\sigma_{\theta}^{2}}{D} \left[\frac{D \sigma_{\theta}^{2} N}{D \sigma_{\theta}^{2} N - \sigma_{\theta}^{2} \sigma^{2} + D \sigma^{2}} \right] \right)$$

- there are vector versions of this
- there are "successive refinement" versions of this
 - I have not seen a Kalman filter involved
- I am not aware of a data-association version

Data Fusion for Decision-Making and Estimation: Some Topics

- Scan statistics for sensor networks
- Consensus in sensor networks
- Data fusion with intermittent detections
- Quantized estimation: a note
- Decentralized learning
- Decentralized estimation with MOU

Scan Statistics for Sensor Networks

- Barrier sensor network: a narrow but long sensor band along coastline.
 - How to effectively fuse the binary local decisions in the fusion center?
- Angle dependent reflection
 - Only a small area of sensors can reliably detect

- Song, Willett, Glaz & Zhou, "Active Detection With A Barrier Sensor Network Using A Scan Statistic," JOE 2012.

- Glaz, Guerriero & Sen, "Approximations for a three dimensional scan statistic," J. Comp. in App. Prob., 2009.

NATO

Slide 18

sensor declaring detection

- Scan statistics have broad application:
 - epidemiology
 - ecology
 - quality control and reliability
 - intrusion detection
- The key ingredient to scan statistics is that the threshold can be set analytically and explicitly.
 - admittedly, the formula is complicated

Consensus in Sensor Networks

- Consider peer-to-peer communication

 as opposed to "parallel" or "serial" topology
- Each sensor has its own observation and sends its information to its "neighbors" defined by the graph

$$\mathbf{s}_0 = \mathbf{z}$$
 \longrightarrow $\mathbf{s}_n = \mathbf{W}\mathbf{s}_{n-1}$

 Require obvious condition on eigenvalues of W and that it be doubly-stochastic

- Braca, Marano, Matta & Willett, "Consensus-Based Page's Test in Sensor Networks," Sig. Proc. 2009.

NATC

Consensus for Quickest Detection

• Consider at all sensors *j* a switch in distribution:

- Require $\begin{pmatrix} S_{n,1} \\ S_{n,2} \\ \vdots \\ S_{n,M} \end{pmatrix} = \mathbf{W}_n \begin{pmatrix} S_{n-1,1} \\ S_{n-1,2} \\ \vdots \\ S_{n-1,M} \end{pmatrix} + M \mathbf{W}_n \begin{pmatrix} \log \frac{f_1(x_{n,1})}{f_0(x_{n,1})} \\ \log \frac{f_1(x_{n,2})}{f_0(x_{n,2})} \\ \vdots \\ \log \frac{f_1(x_{n,M})}{f_0(x_{n,M})} \end{pmatrix}$
- For example, pair-wise averaging

$$\mathbf{W}_n = \mathbf{I} - \frac{(\mathbf{u}_k - \mathbf{u}_h)(\mathbf{u}_k - \mathbf{u}_h)^T}{2}$$

Example

• Change from N(0,1) to N(0,1.032), 10 sensors

Consensus / Page is asymptotically optimal (compared to centralized) and much better than an OR rule (bank of Page tests)

Intermittent Detections

Track Management Architecture

Single KF update

Track Termination

• Goal: quickest detection of change in measurement distribution from a true track (H_1) to a false track (H_0)

• Page test

- Proven global optimality for i.i.d. case and some Markov models
- Some recent asymptotic optimality results for HMMs (Fuh 2003), not applicable for this case
- A sequential test that minimizes delay in detection of a distribution change at a given false alarm rate

$$s_{k} = \ln \frac{\Pr\{\delta_{k} | \delta_{1}^{k-1}, H_{0}\}}{\Pr\{\delta_{k} | \delta_{1}^{k-1}, H_{1}\}} \qquad c_{k} = \max(c_{k-1} + s_{k}, 0)$$

- Blanding, Willett, Coraluppi & Bar-Shalom, "Multisensor Track Management for Targets with Fluctuating SNR," TAES 2009.

organization

- Page test example:
 - unit Gaussian with mean +/- 0.2
 - can you see it?

Page Test

- Simulation methodology:
 - Track termination tests begin on first measurement after track confirmation
 - 10⁴ simulations under H_1
 - 10^4 simulations under H_0
- Surprising result:
 - Page test is *not* globally optimal
 - LLR innovations are not i.i.d.

Track termination performance (4 sensors)

Shiryaev Test

- Optimum quickest detection when the problem is formulated using a Bayesian approach (in the i.i.d. case)
 - *a priori* probability of change time k_c :

$$\Pr\{k_c = k\} = \begin{cases} \pi_0 & k = 0\\ (1 - \pi_0)\rho(1 - \rho)^{k - 1} & k > 0 \end{cases}$$

- Using Bayes rule, *a posteriori* change probability:

$$\pi_{k} = \frac{[\pi_{k-1} + (1 - \pi_{k-1})\rho] \Pr\{\delta_{k} | \delta_{1}^{k-1}, H_{0}\}}{[\pi_{k-1} + (1 - \pi_{k-1})\rho] \Pr\{\delta_{k} | \delta_{1}^{k-1}, H_{0}\} + (1 - \pi_{k-1})(1 - \rho) \Pr\{\delta_{k} | \delta_{1}^{k-1}, H_{1}\}}$$

– The Shiryaev stopping rule becomes:

$$g_k = \ln \frac{\pi_k}{1 - \pi_k}$$

$$g_{k} = \ln(\rho + e^{g_{k-1}}) - \ln(1 - \rho) + \ln\frac{\Pr\{\delta_{k} | \delta_{1}^{k-1}, H_{0}\}}{\Pr\{\delta_{k} | \delta_{1}^{k-1}, H_{1}\}}$$

Track Termination Tests

- Sequential tests
 - Page test
 - Shiryaev test
- Rule-Based
 - K/N rule
- Conclusion:
 - Shiryaev test performs best

Comparison of average track duration for different track termination rules

A Note on Quantized Estimation

- It is fairly clear that the estimation performance here is limited by the quantization fineness and does not improve beyond a certain point with n.
- Paradoxically, the lower the sensor noise the worse this behavior is.
- Luo's solution is to use a randomized quantizer.

- Luo, "Universal Decrentalized Estimation in a Bandwidth constrained Sensor Network," T-IT 2005.

NATO STO IST-155, Willett

Decentralized Learning

- Suppose one has a repository of training data and a collection of local agents.
- As opposed to our usual decisionmaking based on distributed observations, let us here assume that all decision-makers observe the same datum but that the "database" of training data is distributed.
- Explore extreme case: each sensor has only only training datum.
- Application here is regression.

Decentralized NN Learning

- Nearest-neighbor learning gets ignored sometimes.
 - it can be shown that the NN *decision* is (asymptotically) no worse than twice the optimum, 2P*(e)
 - with k-NN we have P(e) goes to $(1+1/k)P^*(e)$
- There is a similar suite of results with NN regression.
 - MMSE asymptotically no worse than twice MMSE^{*}
- How do we achieve this?
 - transmission rule like with censoring
 - sensor i transmits after delay proportional to $\alpha_n d(X,X_i)$
 - as long as α_n is proportional to $k_n n$ this works

Blum & Sadler's Access Rule

First 5 neighbors

When k_n agents have been heard from, FC sends broadcast to stop.

- Blum & Sadler, "Energy efficient signal detection in sensor networks using ordered transmissions," TSP 2008.

- The various lines here refer to different schemes to communicate the agents' regression data to the FC.
- The number of sensors is *n*.

- Marano, Matta & Willett, "Nearest-neighbor distributed learning by ordered transmissions," TSP 2013.

Decentralized Estimation with MOU

- bandwidth constraint:
 - sensors each transmit one measurement
 - which is the most informative?
- here we discuss k-mos
 - "modulus order statistic"
 - transmit the kth-nearest measurement to where the target is expected to be

- Braca, Guerriero, Marano, Matta & Willett, "Selective Measurement Transmission in Distributed Estimation with DA," TSP 2010. NATO STO IST-155, Willett Slide 35

Data association likelihood for frame Z={ $z_1, z_2, ..., z_n$ }, probability of detection P_d, clutter intensity λ , observation volume V and likelihood model p(z| θ) (this is commonly a Gaussian pdf centered at θ).

$$p(Z \mid \theta, n) = (1 - P_d) \left(\frac{1}{V}\right)^n \mu(n) + \frac{1}{n} P_d \left(\frac{1}{V}\right)^{n-1} \mu(n-1) \sum_{i=1}^n p(z_i \mid \theta)$$
$$\mu(n) = \frac{(\lambda V)^n e^{-\lambda V}}{n!}$$

1-Dimensional Gate (1D)

2-Dimensional Gate (2D)
OTAN

SCIENCE AND TECHNOLOGY ORGANIZATION COLLABORATION SUPPORT OFFICE

Note that the sensors corroborate one another, for case that θ is far away from expected location θ_0

anizatio

cso

A Fisher Information analysis suggests that when the clutter is high it is better to transmit a higher k-mos.

Apparently, however, the probability that a given k-mos is target originated is always highest for the nearest neighbor.

Probability densities of various k-mos for the target-present situation (true θ is unity). Note the appearance of a "bump" around the true θ for the high-clutter case – this is why a higher k-mos may be a better choice.

Probability densities of various k-mos for the clutter-only situation. Low clutter is three gated contacts, and high clutter is ten gated contacts.

Probability densities of various k-mos for the target-present situation and two dimensions. Note that the "bump" at the true θ persists. Probability densities of various k-mos for the clutter-only situation and twodimensional observations.

cso

Data Fusion for Tracking

- Some slides from "Industrial Strength Real World Multi-Sensor Fusion" by Fred Daum (May 2nd 2016).
- Track-to-Track (T2T) association
 - in the two-sensor case it is relatively easy
 - auction algorithm
- Bias estimation
 - example of passive-sensor tracking with angle biases

Taxonomy of Fusion for Tracking

- Type I configuration:
 - Single sensor situation, which serves as a baseline.
- Type II configuration:
 - Single sensor tracking followed by track to track association and fusion. Subtypes include with/without memory, and with/ without feedback.
- Type III configuration:
 - Measurement to measurement association across sensors with all the measurements from the same time (the sensors are assumed perfectly synchronized), i.e., static association, followed by central dynamic association and tracking.
- Type IV configuration:
 - Completely centralized association and tracking.

Type I Configuration

- Single sensor situation.
- In a multisensor situation this corresponds to *reporting responsibility (RR)*. Each sensor operates alone and has responsibility for a certain sector of the surveillance region — no fusion of the data (measurements or tracks) from the multiple sensors is done.
- As targets move from one sector to another, they are handed over – handoff – in a manner that depends on the system. Generally, the mechanism is to assign responsibility to the sensor with the highest expected accuracy, although workload and communication constraints can also play a role.

Type II Configuration

- Each sensor maintains its own (distributed) track.
 - this is often the preferred solution
 - solution is robust to failure and relatively light in its communication requirements
- Issues:
 - sensor registration & bias
 - track-to-track association (T2TF)
 - correlation between distributed tracks?
 - fused covariance?

Type III Configuration

- Synthetic example of detections to be fused.
 - Covariances are random,
 - Pd = 50%, 25 sensors, λ = 5.
 - There are four "true" targets illustrated by magenta stars.
- This is not traditional predetection fusion!
 - The detections must be clustered before being fused.

Type IV Configuration

- Completely centralized association and tracking. For realistic multi-sensor processing must allow for out-of-sequence measurements (OOSMs).
 - can happen because plots arrive via network, perhaps datagram routing
 - optimally: recompute entire solution when OOSM arrives avoid this!
 - exact single-gain "corrector" solution for single-lag case [Bar-Shalom] approximate single-gain "corrector" solution for multi-lag case [Bar-Shalom, Mallick, others]
 - exact multi-lag solution based on "accumulated state density" [Koch & Govaers]
- Sensors need not (and should not be assumed to) be synchronized.

Theoretical Multi-sensor Fusion

Performance

Interesting Parameter

Real World Multi-sensor Fusion

Performance

Interesting Parameter

Theoretical Multi-sensor Fusion

Performance

Interesting Parameter

Real World Multi-sensor Fusion

Performance

Parameter

Key Real World Issues for Fusion

- residual bias between sensors
- targets detected by sensor A are not always the same as the targets detected by sensor B
- targets resolved by sensor A are not always the same as the targets resolved by sensor B
- targets tracked by sensor A are not always the same as the targets tracked by sensor B
- not all relevant data or tracks are reported by all data links
- inconsistent covariance matrices (of data or tracks) from sensors

Track Association vs. Bias

MOU

T2T Association (MOU)

- The goal is to minimize the "cost" such that no target gets assigned twice.
- For two sensors the problem is relatively easy and there exist polynomialtime algorithms for it.
 - we'll look at this
- For more than two sensors the problem is NP-hard
 - relaxation

Costs

Sensor 2

T2T Assignment Costs

(etc.)

Sensor 1

Criterion Matrix

Prices

Sensor 2				
	70	65	95	75
or 1	75	16	34	25
ens	27	11	58	50
S	67	49	22	69

Assignment Matrix

Sensor 2 0 0 0 0 Sensor 0 0 0 0 0 0 0 0 0 0 0 0 Initial state. Begin with first association and set price to one that maximizes the difference between gain and price

Criterion Matrix

Prices

-	70	65	95	75	
Sor	75	16	34	25	
Sens	27	11	58	50	
•,	67	49	22	69	

Sensor 2

Assignment Matrix

Sensor 2				
1	0	0	0	0
sor	1	0	0	0
Sen	0	0	0	0
2	0	0	0	0

Turns out to be second target. Repeat for second sensor-2 track.

NATO STO IST-155, Willett

Slide 56

Criterion Matrix

Prices

Sensor 2				
-	70	65	95	75
Sor	75	16	34	25
Sens	27	11	58	50
•,	67	49	22	69

Assignment Matrix

Sensor 2

_	0	1	0	0
or	1	0	0	0
Sens	0	0	0	0
•,	0	0	0	0

Turns out to be second sensor-1 track. Repeat for second sensor-2 track, which takes the first sensor-1 track.

Criterion Matrix

Prices

Sensor 2

1	70	65	95	75
Sor	75	16	34	25
Sens	27	11	58	50
•,	67	49	22	69

Assignment Matrix

Sensor 2

	0	0	1	0
or 1	1	0	0	0
Sens	0	0	0	0
•)	0	0	0	0

Turns the third sensor-2 track likes the first target-1 track more than the second target-2 track does.

Criterion Matrix

Sensor 2

Prices

1	70	65	95	75
Sor	75	16	34	25
Sens	27	11	58	50
	67	49	22	69

Assignment Matrix

Sensor 2

	0	0	1	0
or 1	1	0	0	0
ens	0	0	0	0
S	0	1	0	0

The second target-2 track has most gain possible, so back to that one. It turns out to like the 4th target-1 track the most. Note that price is now 21=49-(65-37).

NATO STO IST-155, Willett

Slide 59

Criterion Matrix

Sensor 2				
1	70	65	95	75
Sor	75	16	34	25
Sens	27	11	58	50
•,	67	49	22	69

Prices

Assignment Matrix

Sensor 2

	0	0	1	0	
OC	1	0	0	0	
Sens	0	0	0	1	
.,	0	1	0	0	

The 4th target-2 track gets assigned to the 3rd target-1 track. Price is 2=50-(69-21).

Bias: Example FPA Sensors

- There can be biases in range, time all kinds of things but most often they come to the fore in angle-only sensing.
- Consider (the important) application of multi-sensor tracking of threats from multiple satellites.
 - Biases here are roll (ϕ), pitch (ρ) and yaw (ψ).
- These can be estimated by using targets of opportunity or multiple frames of data.
- There are 3×N_{sensor} biases and 3×N_{target} target parameters to estimate, and 2×N_{sensor} ×N_{target} observations.
 - For 2 sensors we would need at least 6 targets.

Example of Bias Estimation

Scheme	Position RMSE	Velocity RMSE
1	107.44	5.16
2	47,161.10	25,149.32
3	494.49	19.55

Scheme 1: No bias. Scheme 2: Ignore bias. Scheme 3: Estimate bias.

- For multi-frame single-target data there are 3×N_{sensor} biases and 6 target parameters to estimate (velocities!), and 2×N_{sensor} ×N_{frame} observations.
 - For 2 sensors we would need at least 3 frames.

"Hard" Tools for a "Soft" Problem

- A traditional target evolves according to a Markov model
 - means that $p(\mathbf{x}(t) | \mathbf{x}(t-1), \mathbf{x}(t-2), ...) = p(\mathbf{x}(t) | \mathbf{x}(t-1)).$
 - usual model is $\mathbf{x}(t) = f(\mathbf{x}(t-1), \mathbf{v}(t))$ where f is some function and v is noise.
- The observation is occluded:
 - roiled by noise
 - missed detections
 - false alarms
 - multiple targets
- That is: a "hidden" Markov model (HMM).
- Can we apply our target tracking knowledge / expertise to other non-traditional models?

- Let's try to model some nefarious plot
- Time model
 - carrying out an attack requires planning
 - steps of the plan form a pattern
 - pattern of actions can be modeled using a Markov chain
- Observation model
 - terrorists leave detectable clues about enabling events
 - clues are not direct observations, but are related to them
 - the states in the Markov chain are hidden.
- Clutter
 - refers to false / irrelevant / spurious observations
 - example: someone has bought fertilizer
 - fertilizer bomb?
 - actual interest in farming?

Transactions are necessary in order for "plan" to evolve:

Underlying the observation stream, a puzzle is being fit together.

- S₁: Selection of targets and reconnaissance
- S₂: Set up cell A₁

NATO

OTAN

- S₃: Set up cell A
- S₄: Acquire money for operation
- S₅: Gather resources

- S₆: Expert arrives to assemble bombs
- *S*₇: Target reconnaissance
- S₈: Communications and final setup
- S₉: Attack

Truck bombing example: Really, too simple.

Graph evolves probabilistically from one state to the next:

HMM's observations are new elements being added to network.

- The observation stream (transactions) is from a (logical) OR-ing of component parts from several "targets" of interest and clutter.
- We seek a multi-target tracker that is appropriate for the job.
- We have developed a multi-Bernoulli filter (MBF) to extract it.
- We have begun to analyze "detectability."
- In the future we will extend it to multiple activities and features.

- Granstrom, Willett & Bar-Shalom, "Asymmetric Threat Modeling Using HMMs: Bernoulli Filtering and Detectability Analysis," TSP 2016.

csc

NATO

OTAN

OTAN

SCIENCE AND TECHNOLOGY ORGANIZATION COLLABORATION SUPPORT OFFICE

Detection rate (*D*) at 10% false alarm rate (*FA*) for daisy chain HMMs with probability of state transition *PT*, and number of states *N*.

Detectability vs. Complexity & Speed

Summary

- Multi-User Information Theory
 - typicality: entropy & capacity
 - MAC, broadcast, CEO problem
- Case studies
 - scan statistics for sensor networks
 - consensus in sensor networks
 - data fusion with intermittent detections
 - quantized estimation: a note
 - decentralized learning
 - decentralized estimation with MOU
- Data Fusion for Tracking
 - architectures
 - bias
 - track fusion
- Example of Application of Hard Methods to a Soft Problem

l dont always ask for questions after a presentation

But when I do, I make sure I answer them and ensure happiness

