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•  A	  Communica6ons	  Perspec6ve	  on	  Data	  Fusion	  
–  mul6-‐user	  informa6on	  theory	  

•  Data	  Fusion	  for	  Detec6on	  &	  Es6ma6on	  
–  scan	  sta6s6cs	  for	  sensor	  networks	  
–  consensus	  in	  sensor	  networks	  
–  data	  fusion	  with	  intermi,ent	  detec6ons	  
–  quan6zed	  es6ma6on:	  a	  note	  
–  decentralized	  learning	  
–  decentralized	  es6ma6on	  with	  MOU	  

•  Data	  Fusion	  for	  Tracking	  
–  architectures	  
–  bias	  
–  track	  fusion	  

•  Mapping	  a	  “SoN”	  Problem	  to	  “Hard”	  Terms	  
–  an	  example	  

Outline	  
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•  What	  are	  the	  bounds?	  
•  Basic	  IT	  mo6vated	  by	  “typicality”	  

–  Source	  coding,	  channel	  capacity,	  rate-‐distor6on	  theory	  
•  Capacity	  for	  networks	  

– Mul6-‐Access	  Channel	  (MAC)	  
–  Broadcast	  Channel	  
–  General	  Networks	  

•  Distributed	  Coding	  
–  Noisy	  and	  Noiseless	  

•  Distributed	  Inference	  (CEO	  Problem)	  

Mul6-‐Sensor	  Informa6on	  Theory	  
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•  Consider	  a	  discrete	  iid	  source	  {Xi}	  with	  probabili6es	  pj=Pr(Xi=xj)	  
•  Suppose	  we	  have	  Xn={X1,X2,	  …	  ,	  Xn}	  

–  On	  average	  there	  will	  be	  np1	  x1’s,	  np2	  x2’s,	  etc.:	  Pr(“ABBA”)=pA2pB2	  
–  then	  

	  
	  
	  
	  

•  Typical	  Xn	  is	  one	  for	  which	  
	  
	  
	  
–  LLN	  says	  probability	  that	  Xn	  is	  typical	  is	  1-‐ε,	  small	  ε as	  you	  like	  
–  “Only	  typical	  X’s	  ever	  happen.”	  
–  Typical	  set	  has	  2nH(X)	  elements,	  each	  with	  probability	  2-‐nH(X)	  

Pr(Xn ) ≈ pj
npj

j=1

m

∏ = 2
n pj log pj( )
j=1

n

∑
= 2−nH (X ) where H (X) = pj log 1/ pj( )

j=1

n

∑

H (X)−ε ≤ −1
n
log p(Xn )( ) = −1n log p(Xi )( )

i=1

n

∑ ≤ H (X)+ε
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Entropy	  
•  Source	  coding	  scheme:	  

	  
	  
	  
	  
	  

	  
•  Code	  length	  per	  source	  symbol	  is	  	  

typical
? 

code as “0” + n× (H(X)+ε) bits 

code as “1” + n×log(|X|) bits 

X 

L = 1
n
(1−ε) 1+ nH (X)+ nε( )"# $%+ε 1+ nm( ) ≈ H (X)

Y 

N 
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Informa6on	  
•  Information is I(X;Y) = H(X)-H(X|Y) 
•  Communication channel: 

data 
source 

code by 
picking 
an Xn 

Xn: n symbols of X Yn: n symbols of Y 

atypical Xn 

typical Xn 

2nH(X) 

atypical Yn jointly typical pairs, 2nH(X,Y) 

choose these 
randomly,  
according to p(x) 

typical Yn 

2nH(Y) 
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•  number	  of	  typical	  Xn’s:	  2nH(X)	  

•  number	  of	  typical	  Yn’s:	  2nH(Y)	  
•  number	  of	  jointly-‐typical	  (Xn,Yn)	  pairs:	  2nH(X,Y)	  

•  code	  procedure:	  
–  look	  at	  our	  Yn,	  and	  if	  jointly-‐typical	  with	  

exactly	  one	  Xn,	  then	  we	  decode	  to	  that,	  
otherwise	  error	  

•  but	  Xn	  each	  is	  joined	  to	  2n(H(X,Y)-‐H(Y))	  Yn’s	  
•  so	  use	  only	  a	  frac6on	  2n(H(Y)-‐H(X,Y))	  of	  the	  2nH(X)	  

available	  Xn	  codewords	  
•  then	  we	  have	  leN	  2nH(X)2n(H(Y)-‐H(X,Y))	  =	  2nI(X;Y)	  

typical	  Xn	  codewords	  leN	  
•  I(X;Y)=H(X)+H(Y)-‐H(X,Y)	  	  defines	  the	  rate	  we	  can	  

send	  data	  
•  this	  informa6on	  is	  the	  “capacity”	  
	  

Xn Yn 
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Capacity	  
•  capacity:	  C=maxp(x){I(X;Y)}	  

–  means	  that	  you	  choose	  a	  code	  to	  match	  the	  channel	  
•  in	  the	  Gaussian	  case	  

	   	  C=B*log(1+P/N0B)	  
where	  B	  is	  the	  bandwidth	  and	  P	  is	  the	  transmi,ed	  power	  

•  parallel	  coopera4ve	  Gaussian	  channels:	  water-‐filling	  

noise 
level 
per 
channel 

power used 
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Mul6-‐Access	  Channel	  (MAC)	  
W1 X1 

X2 

Xm 

p(Y|X1,X2, … Xm) Y 

( ) SSXYSXISR c ∀≤ )(|);()(

where	  
•  S	  is	  a	  subset	  of	  the	  users	  {1,2,	  …	  ,m}	  and	  Sc	  is	  its	  complement	  
•  R(S)	  is	  the	  sum	  of	  the	  rates	  of	  the	  users	  in	  S	  
•  the	  informa6on	  uses	  a	  product	  (independent)	  distribu6on	  of	  X(S)	  
•  this	  is	  exact	  region,	  not	  a	  bound	  on	  the	  region	  

W2 

Wm 

messages (W1,W2, … Wm) 
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MAC	  Region	  for	  Two	  Users	  
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A 

•  source	  2	  starts	  at	  R2~0	  
-  source	  2	  is	  easy	  to	  decode,	  so	  X2	  

is	  known	  
-  then	  source	  1	  can	  transmit	  at	  

A=I(X1;Y|X2)	  
•  now	  source	  2	  increases	  its	  rate	  up	  to	  B	  

-  source	  2	  can	  s6ll	  be	  decoded	  
(first)	  while	  R2<I(X2;Y)	  

-  up	  to	  that	  point	  X1	  is	  just	  “noise”	  
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Gaussian	  MAC	  
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frequency	  division	  
mul6-‐access	  is	  	  
actually	  not	  so	  bad	  
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Broadcast	  Channel	  

•  exact	  bound	  not	  known	  in	  general,	  but	  “degraded	  broadcast	  channel”	  is:	  

X1 

X2 

Xm 

p(Y1,Y2, … Ym) X 

W1 

W2 

Wm 

W1 

W2 

Wm 

X Y1 Y2 U 

W1 W2 

•  if Y2 can decode W2, so can Y1: R2<I(U;Y2)<I(U;Y1) 

•  then R2<I(U;Y2)<I(U;Y1), so U is known at Y1 

•  if U is demodulated, then R1<I(X;Y1|U) 
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General	  Networks	  

S Sc 

cut-set line 

( ))(|)();(
,

cc

SjSi
ji SXSYSXIR

c

≤∑
∈∈

→

This	  is	  an	  “outer	  bound,”	  not	  in	  general	  6ght	  for	  achievable	  region.	  
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The	  Slepian-‐Wolf	  Problem	  
•  distributed	  noiseless	  source	  coding	  [1973]	  

–  for	  dependent	  sources	  
–  one	  source	  can	  help	  the	  other	  reduce	  its	  rate	  

R2 

R1 

H(X1) 

H(X2|X1) 

H(X1|X2) 

H(X2) 

•  clearly	  R1>H(X1)	  &	  R2>H(X2|X1)	  
•  clearly	  R2>H(X2)	  &	  R1>H(X1|X2)	  
•  triangular	  region	  is	  filled	  in	  by	  

6me-‐sharing	  
•  R1+R2>H(X1,X2)	  

X1 

X2 

coder 

coder 
(X1,X2) decode 
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Distributed	  Inference:	  The	  CEO	  Problem	  
•  Berger,	  Zhang	  &	  Viswanathan	  [1996]	  
•  Viswanathan	  &	  Berger	  [1997]	  
•  Oohama	  [1998]	  
•  Zamir	  &	  Berger	  [1999]	  
•  Chen,	  Zhang,	  Berger	  &	  Wicker	  [2004]	  
•  Prabhakaran,	  Tse	  &	  Ramchandran	  [2004]	  

θ	


ν1	  

coder	  

ν2	  

coder	  

νm	  

coder	  

X1	  

X2	  

Xm	  

es6mate	  θ	


R1	  

R2	  

Rm	  

• everything	  is	  
Gaussian	  

• everything	  is	  
independent	  

• we	  have	  an	  MSE	  
criterion	  on	  q	  
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•  there	  are	  vector	  versions	  of	  this	  
•  there	  are	  “successive	  refinement”	  versions	  of	  this	  

–  I	  have	  not	  seen	  a	  Kalman	  filter	  involved	  
•  I	  am	  not	  aware	  of	  a	  data-‐associa6on	  version	  
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•  Scan	  sta6s6cs	  for	  sensor	  networks	  
•  Consensus	  in	  sensor	  networks	  
•  Data	  fusion	  with	  intermi,ent	  detec6ons	  
•  Quan6zed	  es6ma6on:	  a	  note	  
•  Decentralized	  learning	  
•  Decentralized	  es6ma6on	  with	  MOU	  

Data	  Fusion	  for	  Decision-‐Making	  
and	  Es6ma6on:	  Some	  Topics	  
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•  Barrier	  sensor	  network:	  a	  narrow	  but	  long	  sensor	  
band	  along	  coastline.	  
–  How	  to	  effec6vely	  fuse	  the	  binary	  local	  decisions	  in	  the	  
fusion	  center?	  

•  Angle	  dependent	  reflec6on	  
–  Only	  a	  small	  area	  of	  sensors	  can	  reliably	  detect	  	  

Scan	  Sta6s6cs	  for	  Sensor	  Networks	  Barrier Sensor Networks Based Surveillance

source 

target 

detectable zone 

sensor field 

▶ Barrier sensor network:
a narrow but long sensor band along certain coastline

▶ System workflow:

local observation local binary decision 

local processing 

fusion center 

▶ Our concentration:
How to effectively fuse the binary local decisions in
the fusion center?

4 / 17

-  Song, Willett, Glaz & Zhou, “Active Detection With A Barrier Sensor Network Using A Scan Statistic,” JOE 2012. 
-  Glaz, Guerriero & Sen, “Approximations for a three dimensional scan statistic,” J. Comp. in App. Prob., 2009. 
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Poisson	  Field	  
Poisson Sensor Field

 sensor declaring detection 

scanning window a division slice 

▶ System configuration:
∙ The total number of activated sensors has a
Poisson distribution;

∙ Activated sensors are uniformly distributed within
the barrier band.

12 / 17

Numerical Results: Poisson (cont.)
ROC curves:
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Scan SNR=7dB
Scan SNR=5dB
Scan SNR=3dB
CRT SNR=7dB
CRT SNR=5dB
CRT SNR=3dB

(a)W = 7 and pf = 0.05
Observation:

▶ Scan statistics has better performance than the CRT
for submarine detection.

15 / 17

•  Scan	  sta6s6cs	  have	  broad	  applica6on:	  
•  epidemiology	  
•  ecology	  
•  quality	  control	  and	  reliability	  
•  intrusion	  detec6on	  

•  The	  key	  ingredient	  to	  scan	  sta6s6cs	  is	  
that	  the	  threshold	  can	  be	  set	  
analy6cally	  and	  explicitly.	  

•  admi,edly,	  the	  formula	  is	  complicated	  
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•  Consider	  peer-‐to-‐peer	  communica6on	  
–  as	  opposed	  to	  “parallel”	  or	  “serial”	  topology	  

•  Each	  sensor	  has	  its	  own	  observa6on	  and	  sends	  its	  
informa6on	  to	  its	  “neighbors”	  defined	  by	  the	  graph	  
	  

•  Require	  obvious	  condi6on	  on	  eigenvalues	  
of	  W	  and	  that	  it	  be	  doubly-‐stochas6c	  

Consensus	  in	  Sensor	  Networks	  
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change of distribution

Ideal Centralized System
Running Consensus
Threshold

Figure 1: Empirical realizations of the running consen-
sus statistics, in a network made of 10 sensors (thinner
gray lines, almost superimposed to each other). The
bold red line refers to the centralized system.

the above matrices, let us consider the classical example
of a pairwise averaging algorithm, according to which, at
time n, a pair (h, k) of sensors is uniformly and randomly
selected. The corresponding realization of Wn is

Wn = I− (uk − uh)(uk − uh)T

2
, (9)

where I is the identity matrix, and uk is a vector of all
zeros, but for the k−th entry which is unity. Using this
matrix into the update equation simply amounts to let
sensors h and k replace their state by the corresponding
arithmetic averages. Formally, in this case En = {h, k}.

Our solution for quickest detection via running con-
sensus is finally obtained by merging the update rule (8)
to the classical Page’s recursion (2), the overall recursion
(at the j−th node) becoming1

Sn,j = max{0,U(Sn−1,j)}. (10)

Before going into the details of performance eval-
uation, it is instructive to start from empirical evi-
dences. Figure 1, obtained by computer experiments,
displays the behavior of the ideal centralized statistic
Sn (bold red curve), along with the locally computed
sensor statistics Sn,j (tiny gray curves) of the running
consensus Page’s detectors. A general trend is observed:
in a first portion of the time axis, the statistics often re-
set to zero; once that the change in distribution takes
place, they tend to grow up to eventually cross the de-
tection threshold. As a matter of fact, the different run-
ning consensus statistics always behave quite similarly,
and, in addition, closely track the statistic of the cen-
tralized system. This in turn implies that the instants
of detection events, i.e., the times at which the curves
cross the positive threshold, are almost the same for the

1While the update rule U is linear, the addition of Page’s re-
set rule introduce a nonlinear effect, which is not present in the
classical gossip algorithms.

Figure 2: Network topologies for the two examples con-
sidered in Sect. 4. The circles represent the vertex set V,
while the random edge set En is selected among the pos-
sible connections shown by lines between the vertices.

different statistics, leaving hope that the performance of
the running consensus quickest detectors may approach
the theoretical limit represented by the performance of
the centralized system.

This behavior can be explained as follows. Running
consensus introduces strong dependencies among nodes
by continuously propagating information across the net-
work, and this implies that the change is detected at
almost equal times at different sensors. As time elapses,
the effect is emphasized and the statistics Sn,j at differ-
ent j become closer and closer each other.

As a consequence, provided that the algorithm
evolves for a sufficiently long time, a reliable estimate of
the instant at which the distribution-change took place
can be obtained by querying any of the M nodes, and
the performance of the running consensus scheme can be
computed with reference to any of the sensors, according
to the genuinely flat nature of the system.

3.1 Performance evaluation

A complete derivation of the performance formulas is
not reported with all the details here; we refer the reader
to [7]. The arguments below, however, are sufficient for
a complete understanding of the main ideas behind the
formal derivations.

It is convenient to regard the local detection statistic
as Sn,j = Sn + en,j , where the difference between the
current state Sn,j and its centralized counterpart Sn is
measured by an error term, that is assumed for now to
be bounded, |en,j | ≤ ε, ∀n and ∀j.

Sensors initially acquire data following the distribu-
tion f0(x). Until a threshold crossing occurs (either be-
cause a real change happened, or because a false alarm
is going to be declared), the j−th sensor may have expe-
rienced a certain number of resets. This number, how-
ever, does not depends only upon Sn, but it is also de-
termined by the behavior of the error term en,j . On the
other hand, it is reasonable to assume that, for γ $ ε,
the role of the centralized statistic Sn as to the thresh-
old crossing will be predominant. Formally we have the
following: Let us define

N = argmin
n

{Sn > γ − ε},

N = argmin
n

{Sn > γ + ε}, (11)

that are nothing but the stopping times pertaining to
a centralized Page’s test with modified thresholds. Ob-

1

Help!
Me!

s0 = z

sn = Wsn�1

September 6, 2016 DRAFT

1

Help!
Me!

s0 = z

sn = Wsn�1

September 6, 2016 DRAFT

- Braca, Marano, Matta & Willett, “Consensus-Based Page’s Test in Sensor Networks,” Sig. Proc. 2009. 
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•  Consider	  at	  all	  sensors	  j	  a	  switch	  in	  distribu6on:	  
	  
	  

•  Require	  
	  
	  
	  

•  For	  example,	  pair-‐wise	  averaging	  

Consensus	  for	  Quickest	  Detec6on	  

QUICKEST DISTRIBUTED DETECTION VIA RUNNING CONSENSUS

Paolo Braca†, Stefano Marano†, Vincenzo Matta†, Peter Willett∗

† Department of Electronic & Computer Engineering (DIEII), University of Salerno
via Ponte don Melillo I-84084, Fisciano (SA), Italy

e-mail: {pbraca, marano, vmatta}@unisa.it

∗ Electrical & Computer Engineering Department (ECE)
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ABSTRACT
Running consensus is a recently proposed distributed
strategy for fostering agreement among sensors of fully
flat networks, by interleaving the two stages of mea-
surements and node-to-node communications. Quickest
detection is a well-established technique for discovering
abrupt changes (if any) in the statistical distribution of
the observed data.

In this paper we tailor the running consensus idea
to the quickest detection problem, to address change-
detection issues in distributed inference systems with
random and time-varying sensors’ connections, in ar-
chitectures without fusion center. Performance bench-
marks are expressed in terms of detection delay and false
alarm rate, for which closed form approximations are
derived, yielding a simple analytical expression of the
operational characteristic of the detector. The proposed
system is tested on typical signal processing problems by
means of numerical simulations that validate the theo-
retical analysis.

Keywords—Quickest detection, Page’s test, Running
consensus.

1. INTRODUCTION

Running consensus is a gossip paradigm for sensor net-
works, originally proposed in [1], whose main feature is
the simultaneous managing of the acquisition and data-
exchange stages, that allows reaching agreement at node
level by elaborating on the time-varying dataset col-
lected by the network, elaborating on classical gossip
protocols [2–5]. Running consensus has been recently
recognized as an efficient way to perform distributed de-
tection in non-parallel, fully flat architectures, that is,
when no fusion center is available [6,7]. Extensions and
applications to random and time-varying networks have
been proposed in [8].

The typical way of operation for such decentralized
detectors prescribes that the sensors acquire data, ex-
change their local information, that, suitably processed,
lead to agreement about a final decision that is (asymp-
totically with time) common to all nodes.

In this paper, we focus on detecting abrupt changes
in the data distribution, usually referred to as quickest
detection. This is a classical problem, that emerges in
practical scenarios where a sudden change in the state of
the nature is to be reported as soon as possible. Page’s

test is a well-established signal processing technique for
quickest change detection, relying upon the so-called
CUSUM statistic [9–11].

Departing from the classical centralized application
of Page’s tests, the investigation has been extended in
several directions, including transient changes, partially
unspecified statistical models, different optimization cri-
teria constraints, quantized data. Useful entry points for
these topics can be, among many others, [10–12].

However, as far as we can tell, quickest change de-
tection for fully distributed detection in sensor networks
has not received the same degree of attention in the top-
ical literature. This motivates us in pursuing the basic
idea behind this work, that of merging the running con-
sensus update rule with Page’s test recursion.

The remainder of this paper is so organized. In
Sect. 2 we pose and formalize the problem, also includ-
ing the basic relevant facts about Page’s test. Section 3
contains the main results of the proposed strategy. Sec-
tion 4 collects a summary of the results of the numerical
simulations used for testing the algorithm, in the con-
text of typical change detection problems. Conclusive
remarks are provided in Sect. 5.

2. PROBLEM FORMALIZATION

The basic change detection problem considered in this
work is now formalized according to a very classi-
cal setup [9, 10]. In the following, the index j ∈
{1, 2, . . . ,M} identifies a specific sensor, while n ≥ 1
is the (discrete) time index. The n−th observation xn,j

collected by the j−th node follows the null-hypothesis
distribution f0(x) until a deterministic but unknown
time n0. From n0 (included) on, the distribution for
all j suddenly changes to f1(x).

The goal of the network is to discover the change as
soon as possible, with a constraint on the average time
between false alarms. Throughout the paper, we make
the basic assumption of statistical independence across
time and across sensors. We have, for all j,

f0(x) : x1,j , x2,j , . . . , xn0−1,j

↘
f1(x) : xn0,j , xn0+1,j , . . .

Note that, at each time slot n, the network globally
collects a vector of observations:

xn = [xn,1, xn,2, . . . , xn,M ].

2.1 Classical parallel architecture

If a fusion center is available, the quickest detection
problem can be addressed by means of the well-known
Page’s test [9], which is basically made of the following
three elements.
• The CUSUM log-likelihood of the data

Sn =
n∑

i=1

M∑

j=1

log
f1(xi,j)

f0(xi,j)
. (1)

• A recursion rule in the form

Sn = max




0, Sn−1 +
M∑

j=1

log
f1(xn,j)

f0(xn,j)




 , (2)

where we explicitly note that the log-likelihood resets
each time it falls below zero, which is thus the point
from which Page’s test restarts.

• A decision rule prescribing that a change is declared
as soon as a threshold γ is crossed, implicitly defining
the test stopping time as

N = argmin
n

{Sn ≥ γ}. (3)

The usual optimality criterion for assessing the test
performance is that of imposing a constraint on the
false alarm rate, and accordingly minimizing the de-
tection delay. The former is defined as the reciprocal
of the average sample size under the null hypothesis,
1/E0[N ], where E0,1[·] denotes expectation computed
under distribution f0,1(x). The latter is approximated
by E1[N ], which is in fact an upper bound on the real de-
lay, corresponding to the assumption that the CUSUM
is exactly zero at time n0. The precise computation
of E1[N ] would instead require knowledge of the exact
value of the CUSUM statistic at n0, and it is usually
intractable [9, 10, 13].

The above key quantities admit closed form ap-
proximations mainly relying upon neglecting the excess
over the threshold of the test statistic at the stopping
time [9,10,13]. Specifically, the false alarm rate and de-
tection delay of the centralized system (suffix c consis-
tently appended) are related to the detection threshold
via

Rc(γ) ≈ M ∆01

eγ − γ − 1
, (4)

Dc(γ) ≈ γ + e−γ − 1

M ∆10
, (5)

where ∆01 is the Kullback-Leibler divergence [10] from
f0(x) to f1(x), and ∆10 is similarly defined. By combin-
ing (4) and (5) the basic operational curve Dc(R) of the
detector, that expresses the detection delay as a func-
tion of a prescribed false alarm rate R, can be obtained.
In the regime of large γ (corresponding to small false
alarm rates), the operational curve can be conveniently
approximated by the following closed form

Dc(R) ≈ log (M ∆01/R)

M ∆10
. (6)

Note that the overall divergence pertaining to a single
time slot is M ∆, accounting for the fact that, at each
time slot, M independent observations are collected.

3. RUNNING CONSENSUS FOR
QUICKEST DETECTION

As already anticipated, the main strategy proposed in
this work for quickest distributed detection in fully flat
networks relies upon the running consensus algorithm.
Details about this latter can be found in [1, 6] and will
not be repeated here for space reasons. In the following
we limit ourselves to report the basic elements in order
to make the paper self-contained.

The network topology is formalized by an undirected
graph (V, En) where V = {1, 2, . . . ,M} is the vertex set
(sensors) and En the edge set that describes sensors’ con-
nections. To address the general problem of random and
time-varying sensors’ connections, we allow En to be ran-
dom and dependent upon the time slot n. Accordingly,
at each n, M data are collected by the network and a
realization of En is drawn, meaning that some subset of
V is selected, and the corresponding nodes share their
states according to a standard consensus algorithm [2].
The exchanged data are not simply the measurements,
but rather the suitable detection statistics computed by
the nodes, summarized in the state variables Sn,j .

Stressing on the flat architecture of the system, we
would like to achieve the following goals.
• Each sensor implements its own test by comparing

the local statistic Sn,j to a detection threshold γ.
The j−th test accordingly stops at a random time

Nj = argmin
n

{Sn,j ≥ γ}. (7)

• No post-detection fusion of the local decisions is al-
lowed, the data fusion being instead embodied in the
running consensus protocol.

• The decision taken by any of the sensors must be
representative of the (unavailable) global, centralized
decision. Accordingly, it must be possible to retrieve
a reliable decision by querying an arbitrary node in
the network.
These design goals basically require asymptotic

(with n) similarity of Sn,j with the centralized detec-
tion statistic Sn, for all j. To this aim, we propose the
following update rule, that is essentially borrowed from
the running consensus data-exchange protocol [1, 6]:





Sn,1

Sn,2
...

Sn,M



 = Wn





Sn−1,1

Sn−1,2
...

Sn−1,M



+M Wn





log f1(xn,1)
f0(xn,1)

log f1(xn,2)
f0(xn,2)
...

log f1(xn,M )
f0(xn,M )





or, in a more compact form

Sn,j = U({Sn−1,j}Mj=1). (8)

The M by M consensus matrices Wn, n = 1, 2, . . . ,
are iid (independent identically distributed) and doubly
stochastic. To better highlight the physical meaning of
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Figure 1: Empirical realizations of the running consen-
sus statistics, in a network made of 10 sensors (thinner
gray lines, almost superimposed to each other). The
bold red line refers to the centralized system.

the above matrices, let us consider the classical example
of a pairwise averaging algorithm, according to which, at
time n, a pair (h, k) of sensors is uniformly and randomly
selected. The corresponding realization of Wn is

Wn = I− (uk − uh)(uk − uh)T

2
, (9)

where I is the identity matrix, and uk is a vector of all
zeros, but for the k−th entry which is unity. Using this
matrix into the update equation simply amounts to let
sensors h and k replace their state by the corresponding
arithmetic averages. Formally, in this case En = {h, k}.

Our solution for quickest detection via running con-
sensus is finally obtained by merging the update rule (8)
to the classical Page’s recursion (2), the overall recursion
(at the j−th node) becoming1

Sn,j = max{0,U(Sn−1,j)}. (10)

Before going into the details of performance eval-
uation, it is instructive to start from empirical evi-
dences. Figure 1, obtained by computer experiments,
displays the behavior of the ideal centralized statistic
Sn (bold red curve), along with the locally computed
sensor statistics Sn,j (tiny gray curves) of the running
consensus Page’s detectors. A general trend is observed:
in a first portion of the time axis, the statistics often re-
set to zero; once that the change in distribution takes
place, they tend to grow up to eventually cross the de-
tection threshold. As a matter of fact, the different run-
ning consensus statistics always behave quite similarly,
and, in addition, closely track the statistic of the cen-
tralized system. This in turn implies that the instants
of detection events, i.e., the times at which the curves
cross the positive threshold, are almost the same for the

1While the update rule U is linear, the addition of Page’s re-
set rule introduce a nonlinear effect, which is not present in the
classical gossip algorithms.

Figure 2: Network topologies for the two examples con-
sidered in Sect. 4. The circles represent the vertex set V,
while the random edge set En is selected among the pos-
sible connections shown by lines between the vertices.

different statistics, leaving hope that the performance of
the running consensus quickest detectors may approach
the theoretical limit represented by the performance of
the centralized system.

This behavior can be explained as follows. Running
consensus introduces strong dependencies among nodes
by continuously propagating information across the net-
work, and this implies that the change is detected at
almost equal times at different sensors. As time elapses,
the effect is emphasized and the statistics Sn,j at differ-
ent j become closer and closer each other.

As a consequence, provided that the algorithm
evolves for a sufficiently long time, a reliable estimate of
the instant at which the distribution-change took place
can be obtained by querying any of the M nodes, and
the performance of the running consensus scheme can be
computed with reference to any of the sensors, according
to the genuinely flat nature of the system.

3.1 Performance evaluation

A complete derivation of the performance formulas is
not reported with all the details here; we refer the reader
to [7]. The arguments below, however, are sufficient for
a complete understanding of the main ideas behind the
formal derivations.

It is convenient to regard the local detection statistic
as Sn,j = Sn + en,j , where the difference between the
current state Sn,j and its centralized counterpart Sn is
measured by an error term, that is assumed for now to
be bounded, |en,j | ≤ ε, ∀n and ∀j.

Sensors initially acquire data following the distribu-
tion f0(x). Until a threshold crossing occurs (either be-
cause a real change happened, or because a false alarm
is going to be declared), the j−th sensor may have expe-
rienced a certain number of resets. This number, how-
ever, does not depends only upon Sn, but it is also de-
termined by the behavior of the error term en,j . On the
other hand, it is reasonable to assume that, for γ $ ε,
the role of the centralized statistic Sn as to the thresh-
old crossing will be predominant. Formally we have the
following: Let us define

N = argmin
n

{Sn > γ − ε},

N = argmin
n

{Sn > γ + ε}, (11)

that are nothing but the stopping times pertaining to
a centralized Page’s test with modified thresholds. Ob-
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•  Change	  from	  N(0,1)	  to	  N(0,1.032),	  10	  sensors	  
	  
	  
	  
	  
	  
	  
	  

•  	  
Consensus	  /	  Page	  is	  asympto6cally	  op6mal	  
(compared	  to	  centralized)	  and	  much	  be,er	  than	  an	  
OR	  rule	  (bank	  of	  Page	  tests)	  
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Figure 1: Empirical realizations of the running consen-
sus statistics, in a network made of 10 sensors (thinner
gray lines, almost superimposed to each other). The
bold red line refers to the centralized system.

the above matrices, let us consider the classical example
of a pairwise averaging algorithm, according to which, at
time n, a pair (h, k) of sensors is uniformly and randomly
selected. The corresponding realization of Wn is

Wn = I− (uk − uh)(uk − uh)T

2
, (9)

where I is the identity matrix, and uk is a vector of all
zeros, but for the k−th entry which is unity. Using this
matrix into the update equation simply amounts to let
sensors h and k replace their state by the corresponding
arithmetic averages. Formally, in this case En = {h, k}.

Our solution for quickest detection via running con-
sensus is finally obtained by merging the update rule (8)
to the classical Page’s recursion (2), the overall recursion
(at the j−th node) becoming1

Sn,j = max{0,U(Sn−1,j)}. (10)

Before going into the details of performance eval-
uation, it is instructive to start from empirical evi-
dences. Figure 1, obtained by computer experiments,
displays the behavior of the ideal centralized statistic
Sn (bold red curve), along with the locally computed
sensor statistics Sn,j (tiny gray curves) of the running
consensus Page’s detectors. A general trend is observed:
in a first portion of the time axis, the statistics often re-
set to zero; once that the change in distribution takes
place, they tend to grow up to eventually cross the de-
tection threshold. As a matter of fact, the different run-
ning consensus statistics always behave quite similarly,
and, in addition, closely track the statistic of the cen-
tralized system. This in turn implies that the instants
of detection events, i.e., the times at which the curves
cross the positive threshold, are almost the same for the

1While the update rule U is linear, the addition of Page’s re-
set rule introduce a nonlinear effect, which is not present in the
classical gossip algorithms.

Figure 2: Network topologies for the two examples con-
sidered in Sect. 4. The circles represent the vertex set V,
while the random edge set En is selected among the pos-
sible connections shown by lines between the vertices.

different statistics, leaving hope that the performance of
the running consensus quickest detectors may approach
the theoretical limit represented by the performance of
the centralized system.

This behavior can be explained as follows. Running
consensus introduces strong dependencies among nodes
by continuously propagating information across the net-
work, and this implies that the change is detected at
almost equal times at different sensors. As time elapses,
the effect is emphasized and the statistics Sn,j at differ-
ent j become closer and closer each other.

As a consequence, provided that the algorithm
evolves for a sufficiently long time, a reliable estimate of
the instant at which the distribution-change took place
can be obtained by querying any of the M nodes, and
the performance of the running consensus scheme can be
computed with reference to any of the sensors, according
to the genuinely flat nature of the system.

3.1 Performance evaluation

A complete derivation of the performance formulas is
not reported with all the details here; we refer the reader
to [7]. The arguments below, however, are sufficient for
a complete understanding of the main ideas behind the
formal derivations.

It is convenient to regard the local detection statistic
as Sn,j = Sn + en,j , where the difference between the
current state Sn,j and its centralized counterpart Sn is
measured by an error term, that is assumed for now to
be bounded, |en,j | ≤ ε, ∀n and ∀j.

Sensors initially acquire data following the distribu-
tion f0(x). Until a threshold crossing occurs (either be-
cause a real change happened, or because a false alarm
is going to be declared), the j−th sensor may have expe-
rienced a certain number of resets. This number, how-
ever, does not depends only upon Sn, but it is also de-
termined by the behavior of the error term en,j . On the
other hand, it is reasonable to assume that, for γ $ ε,
the role of the centralized statistic Sn as to the thresh-
old crossing will be predominant. Formally we have the
following: Let us define

N = argmin
n

{Sn > γ − ε},

N = argmin
n

{Sn > γ + ε}, (11)

that are nothing but the stopping times pertaining to
a centralized Page’s test with modified thresholds. Ob-
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Figure 3: Operational curve of the running-consensus
quickest detector. The detection delay is shown as func-
tion of the false alarm rate for the Bernoulli example
considered in Sect. 4. Dots refer to simulations of the
detector, while the continuous and dashed curves show
the operational characteristic of the ideal centralized
system.

viously, we have E0,1[N ] ≤ E0,1[Nj ] ≤ E0,1[N ]. Let us
focus on f1(x). Applying the last inequality, we have,
for the detection delay at the j − th sensor:

Dc(γ − ε) ≤ Dj ≤ Dc(γ + ε).

In the regime of large γ (i.e., of small false alarm
rate), we can neglect the effect of ε (which is # γ), and
obtain the approximate operational characteristic of the
running scheme:

Dr(R) ≈ log (M ∆01/R)

M ∆10
. (12)

We have assumed so far that the error is bounded.
Such assumption is usually made in sequential analy-
sis for managing the errors due to the excesses over the
thresholds, and provides simple refinements of Wald’s
approximations, see, e.g. [13]. We would like to men-
tion that an extension of these results to the case that
the errors are bounded only on the average can also be
pursued, but this would require rather advanced math-
ematical tools [14].

4. NUMERICAL EXPERIMENTS

In this section we present a summary of the results ob-
tained from Monte Carlo simulations made in two typ-
ical detection setups. As a first example, we assume
the measurements taken by the sensors as iid binary
variables taking value in {0, 1}, drawn from a Bernoulli
distribution. Initially, the outcomes are equiprobable,
while after the change the probability of 1 slightly mod-
ifies to 0.505. Note that the two hypotheses are “quite
close”, thus leading to a challenging detection task.

As to the exchanging protocol, we assume that the
nodes communicate only with their direct (single hop)
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Figure 4: Operational curve of the running-consensus
quickest detector. The detection delay is shown as func-
tion of the false alarm rate for the Gaussian example of
Sect. 4. Dots refer to simulations of the running con-
sensus strategy, while the continuous and dashed curves
pertain to the ideal centralized system. Asterisks show
the operational curve of a bank of Page’s detectors.

neighbors. The network topology is schematically dis-
played in the left plot of Fig. 2, where neighboring sen-
sors are connected by straight lines. It is also assumed
that at each time step v pairs of neighboring sensors are
selected to average their own states. In the following
examples we use v = 5.

The results of 104 Monte Carlo simulations, with
M = 10 sensors, are shown in Fig. 3, where the empirical
operational characteristic of the detector is compared to
the operational curve Dc(R) obtained by combining (4)
and (5); also shown is the closed-form approximation in
eq. (6), valid for tight false alarm rates R. As it can be
seen, the match with Dc(R) in this case is excellent, and
quite accurate is also the match with (6) in the regime
of interest.

Consider now a second case study, namely, the clas-
sical change detection problem of zero-mean Gaussian
observations with different variances. Without loss of
generality, we assume that the variance under the null
hypothesis is set to 1, and that pertaining to the distri-
bution after the change is σ2. As communication strat-
egy, we adopt here the same repeated pairwise averaging
(v = 5), but with the topology shown in the right plot
of Fig. 2.

In Fig. 4 we report the results from 104 Monte Carlo
iterations with M = 10 sensors, and a value of σ =
1.032, that is, a value very close to 1 that again leads to
a difficult detection task. Comments similar to those of
the previous example apply, and the match appears to
be satisfying for any practical purposes.

To further highlight the benefits of the (pre-
detection) data fusion achieved via running consensus,
let us consider a simpler detection scheme working in flat
architectures: a bank of Page’s detectors that indepen-
dently process the locally observed data, without any
form of on-the-fly cooperation. In this case, as soon as
one of these filters declares a change is the distribution
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Track	  Management	  Architecture	  
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Track	  Termina6on	  
•  Goal:	  quickest	  detec6on	  of	  change	  in	  measurement	  

distribu6on	  from	  a	  true	  track	  (H1)	  to	  a	  false	  track	  (H0)	  

•  Page	  test	  
–  Proven	  global	  op6mality	  for	  i.i.d.	  case	  and	  some	  Markov	  models	  
–  Some	  recent	  asympto6c	  op6mality	  results	  for	  HMMs	  (Fuh	  2003),	  not	  

applicable	  for	  this	  case	  
–  A	  sequen6al	  test	  that	  minimizes	  delay	  in	  detec6on	  of	  a	  distribu6on	  

change	  at	  a	  given	  false	  alarm	  rate	  	  
1

1 0
1

1 1

Pr{ | , }ln
Pr{ | , }

k
k

k k
k

Hs
H

δ δ
δ δ

−

−
= 1max( ,0)k k kc c s−= +

- Blanding, Willett, Coraluppi & Bar-Shalom, “Multisensor Track Management for Targets with Fluctuating SNR,” TAES 2009. 
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•  Page	  test	  example:	  
–  unit	  Gaussian	  with	  mean	  +/-‐	  0.2	  
–  can	  you	  see	  it?	  
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Page	  Test	  
•  Simula6on	  methodology:	  

–  Track	  termina6on	  tests	  begin	  
on	  first	  measurement	  aNer	  
track	  confirma6on	  	  

–  104	  simula6ons	  under	  H1 
–  104	  simula6ons	  under	  H0 

•  Surprising	  result:	  
–  Page	  test	  is	  not	  globally	  

op6mal	  
–  LLR	  innova6ons	  are	  not	  i.i.d.	  

Track termination performance (4 sensors) 
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Shiryaev	  Test	  
•  Op6mum	  quickest	  detec6on	  when	  the	  problem	  is	  formulated	  

using	  a	  Bayesian	  approach	  (in	  the	  i.i.d.	  case)	  
–  a	  priori	  probability	  of	  change	  6me	  kc:	  

–  Using	  Bayes	  rule,	  a	  posteriori	  change	  probability:	  

–  The	  Shiryaev	  stopping	  rule	  becomes:	  

0
1

0

0
Pr{ }

(1 ) (1 ) 0c k

k
k k

k
π

π ρ ρ

⎧
⎪
⎨
⎪
⎩

−

=
= =

− − >

1
1 01 1

1 1
1 0 1 11 1 1

[ (1 ) ]Pr{ | , }
[ (1 ) ]Pr{ | , } (1 )(1 )Pr{ | , }

k
k k k

k k k
k k k k k

H
H H

π π ρ δ δ
π

π π ρ δ δ π ρ δ δ

−
− −

− −
− − −

+ −
=

+ − + − −

ln1
k

k
k

g π
π

=
−

1
1

1 0
1

1 1

Pr{ | , }ln( ) ln(1 ) ln
Pr{ | , }

k
kg k

k k
k

Hg e
H

δ δ
ρ ρ

δ δ
−

−

−
= + − − +



Slide	  29	  NATO STO IST-155, Willett 

Track	  Termina6on	  Tests	  

•  Sequen6al	  tests	  
–  Page	  test	  
–  Shiryaev	  test	  

•  Rule-‐Based	  
–  K/N	  rule	  

•  Conclusion:	  	  
–  Shiryaev	  test	  

performs	  best	  

Comparison of average track duration 
for different track termination rules 
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A	  Note	  on	  Quan6zed	  Es6ma6on	  
z1 

z2 

z3 

z4 

zn 

•  It is fairly clear that the estimation 
performance here is limited by the 
quantization fineness and does not 
improve beyond a certain point with n. 

•  Paradoxically, the lower the sensor 
noise the worse this behavior is. 

•  Luo’s solution is to use a randomized 
quantizer. 

zk Pr(uk=λi-1) 
Pr(uk=λi) 

λi λi+1 λi-1 

- Luo, “Universal Decrentalized Estimation in a Bandwidth constrained Sensor Network,” T-IT 2005. 
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•  Suppose	  one	  has	  a	  repository	  of	  
training	  data	  and	  a	  collec6on	  of	  
local	  agents.	  

•  As	  opposed	  to	  our	  usual	  decision-‐
making	  based	  on	  distributed	  
observa6ons,	  let	  us	  here	  assume	  
that	  all	  decision-‐makers	  observe	  the	  
same	  datum	  but	  that	  the	  
“database”	  of	  training	  data	  is	  
distributed.	  

•  Explore	  extreme	  case:	  each	  sensor	  
has	  only	  only	  training	  datum.	  

•  Applica6on	  here	  is	  regression.	  

Decentralized	  Learning	  

2

rr
nn
((XX00))

((XX1, 1, YY11))

      XX00

((XX2, 2, YY22))

      XX00

((XXnn, , YYnn))

      XX00

FCFC

……

Fig. 1. Notional sketch of the distributed learning problem. The i-th sensor is equipped with the i-th example (Xi, Yi) taken

from the training set, and with the current observation variable X0. Remote sensors communicate with the fusion center, which

is demanded to produce the final estimate rn(X0).

Following [3] we consider a decentralized version of this problem in which a network of n

sensors is deployed for estimation purposes. In order to accomplish the estimation task, a training

set Tn = {(Xi, Yi)}ni=1, made of i.i.d. (independent, identically distributed) variables with the

same distribution of (X0, Y0) is disseminated through the network. Assume for simplicity that

each sensor reads a single example belonging to the overall training set, namely, the i-th sensor

owns (Xi, Yi). We adhere to the standard assumption that the Yi’s are scalar, but extensions can

be easily managed.

At a certain time instant, the observation variable X0 is made available to a fusion center (FC),

which broadcasts it to all sensors. These latter, by exploiting the locally available examples,

deliver messages to the FC, which is tasked to produce the final estimate. Fig. 1 is a notional

sketch of the addressed setup. According to the emerging paradigm of distributed learning [3]–[5],

we assume here that the communication from the FC to the sensors is essentially unconstrained,

such that X0 is perfectly recovered by the nodes. On the other hand, severe communication

constraints have to be imposed on the sensors’ side, due to their typical limitations in terms of

available energy and hardware/software complexity.

Let us briefly discuss the (classical) case that such constraints be absent. This situation is

clearly equivalent to that of a centralized system accessing the whole training set and X0. In

March 22, 2013 DRAFT
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•  Nearest-‐neighbor	  learning	  gets	  ignored	  some6mes.	  
–  it	  can	  be	  shown	  that	  the	  NN	  decision	  is	  (asympto6cally)	  no	  
worse	  than	  twice	  the	  op6mum,	  2P*(e)	  

–  with	  k-‐NN	  we	  have	  P(e)	  goes	  to	  (1+1/k)P*(e)	  
•  There	  is	  a	  similar	  suite	  of	  results	  with	  NN	  regression.	  

– MMSE	  asympto6cally	  no	  worse	  than	  twice	  MMSE*	  

•  How	  do	  we	  achieve	  this?	  
–  transmission	  rule	  like	  with	  censoring	  
–  sensor	  i	  transmits	  aNer	  delay	  propor6onal	  to	  αnd(X,Xi)	  
–  as	  long	  as	  αn	  is	  propor6onal	  to	  knn	  this	  works	  

Decentralized	  NN	  Learning	  
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Blum	  &	  Sadler’s	  Access	  Rule	  

. . . . . .

kn-NN estimates
.

.
rn(x0) =

∑kn
i=1 Y(i,n)(x0)

kn
.

Assume the neighbors ”so close” to x0
that Y(i,n)(x0) ∼ f(y|x0).

Assume that they are ”so many” that we
can invoke the LLN:

∑kn
i=1 Y(i,n)(x0)

kn
≈ E{Y0|X0 = x0}︸ ︷︷ ︸

r(x0)

.
x-axis

y-axis r(x)

First 5 neighbors

X0

*

Peter Willett (Uconn) Decentralized NN Learning over Noisy Channels... 07/2013 12 / 24
. . . . . .

NN Access policy
Marano, Matta, Willett 2013, IEEE-TSP, in print

Sensor i computes ‖Xi −X0‖ and sends Yi at a
transmission time αn ‖Xi −X0‖
Sensors with better observations transmit first!

The FC receives labels naturally ordered
according to the NN criterion.

YY11

||X||X1 1 --  XX00||||

NN NN accessaccess

… …

FCFC
YY((kk,,nn)) YY(2,(2,nn)) YY(1,(1,nn))

C
h
a
n
n
e
l

C
h
a
n
n
e
l

YY22

YYnn

||X||X2 2 --  XX00||||

NN NN accessaccess

||||XXnn  --  XX00||||

NN NN accessaccess

……

R. S. Blum and B. M. Sadler, ”Energy efficient signal detection in sensor networks using ordered transmissions,

IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3229-3235, Jul. 2008.

Peter Willett (Uconn) Decentralized NN Learning over Noisy Channels... 07/2013 16 / 24When kn agents have been heard from, FC sends broadcast to stop. 

- Blum & Sadler, “Energy efficient signal detection in sensor networks using ordered transmissions,” TSP 2008. 
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Fig. 8. Same of Fig 7, in the Gaussian/Weibull half-mixed case λ = 0.5.
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Fig. 9. Universal access for the distributed kn-NN regression (Theorem 1, and eq. (13)). The transmission times are set as in

eq. (4), with kn = 3n1/3, ξn = log n, and τmin = 1. Uppermost plot: Signal crowding probability P{Mn ≤ δ}. Lowermost

plot: Maximum transmission time exceedance probability P{T(kn) > nτ}. In both plots, the different curves correspond to

different values of the training set size, namely, n = 22, 100, 464, 2154, 10000, from the darkest (n = 22) to the brightest

(n = 10000).

March 22, 2013 DRAFT

•  The various lines 
here refer to 
different schemes 
to communicate 
the agents’ 
regression data to 
the FC. 

•  The number of 
sensors is n. 

 

- Marano, Matta & Willett, “Nearest-neighbor distributed learning by ordered transmissions,” TSP 2013. 
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Decentralized	  Es6ma6on	  with	  
MOU	  







•  bandwidth	  constraint:	  
–  sensors	  each	  transmit	  one	  

measurement	  
–  which	  is	  the	  most	  informa6ve?	  

•  here	  we	  discuss	  k-‐mos	  
–  “modulus	  order	  sta6s6c”	  
–  transmit	  the	  kth-‐nearest	  

measurement	  to	  where	  the	  target	  
is	  expected	  to	  be	  

- Braca, Guerriero, Marano, Matta & Willett, “Selective Measurement Transmission in Distributed Estimation with DA,” TSP 2010. 
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€ 

p(Z |θ,n) = (1− Pd ) 1V( )
n
µ(n) +

1
n
Pd 1V( )

n−1
µ(n −1) p(zi |θ)

i=1

n

∑

µ(n)= λV( )n e−λV
n!

Data association likelihood for frame Z={z1,z2, ... ,zn}, probability of 
detection Pd, clutter intensity λ, observation volume V and likelihood 
model p(z|θ) (this is commonly a Gaussian pdf centered at θ). 

 

 



 














 










 














1-Dimensional Gate (1D) 2-Dimensional Gate (2D) 



Slide	  37	  NATO STO IST-155, Willett 




 

 

 



















Note that the  
sensors 
corroborate one 
another, for 
case that θ is far 
away from 
expected 
location θ0 
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A Fisher Information 
analysis suggests that 
when the clutter is high 
it is better to transmit a 
higher k-mos. 
 
 
Apparently, however, 
the probability that a 
given k-mos is target 
originated is always 
highest for the nearest 
neighbor. 
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Probability densities of various k-mos 
for the clutter-only situation. Low 
clutter is three gated contacts, and 
high clutter is ten gated contacts. 

Probability densities of various k-mos 
for the target-present situation (true θ 

is unity). Note the appearance of a 
“bump” around the true θ for the high-

clutter case – this is why a higher k-
mos may be a better choice. 
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Probability densities of various k-mos 
for the clutter-only situation and two-
dimensional observations. 

Probability densities of various k-mos 
for the target-present situation and 

two dimensions. Note that the “bump”  
at the true θ persists. 
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•  Some	  slides	  from	  “Industrial	  Strength	  Real	  World	  
Mul6-‐Sensor	  Fusion”	  by	  Fred	  Daum	  (May	  2nd	  2016).	  

•  Track-‐to-‐Track	  (T2T)	  associa6on	  
–  in	  the	  two-‐sensor	  case	  it	  is	  rela6vely	  easy	  
–  auc6on	  algorithm	  

•  Bias	  es6ma6on	  
–  example	  of	  passive-‐sensor	  tracking	  with	  angle	  biases	  

Data	  Fusion	  for	  Tracking	  
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•  Type	  I	  configura6on:	  
–  Single	  sensor	  situa6on,	  which	  serves	  as	  a	  baseline.	  	  

•  Type	  II	  configura6on:	  
–  Single	  sensor	  tracking	  followed	  by	  track	  to	  track	  associa3on	  and	  
fusion.	  Subtypes	  include	  with/without	  memory,	  and	  with/
without	  feedback.	  	  

•  Type	  III	  configura6on:	  
–  Measurement	  to	  measurement	  associa6on	  across	  sensors	  with	  
all	  the	  measurements	  from	  the	  same	  6me	  (the	  sensors	  are	  
assumed	  perfectly	  synchronized),	  i.e.,	  sta3c	  associa3on,	  
followed	  by	  central	  dynamic	  associa3on	  and	  tracking.	  	  

•  Type	  IV	  configura6on:	  
–  Completely	  centralized	  associa3on	  and	  tracking.	  	  

Taxonomy	  of	  Fusion	  for	  Tracking	  
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•  Single	  sensor	  situa6on.	  	  
•  In	  a	  mul6sensor	  situa6on	  this	  corresponds	  to	  repor3ng	  

responsibility	  (RR).	  Each	  sensor	  operates	  alone	  and	  has	  
responsibility	  for	  a	  certain	  sector	  of	  the	  surveillance	  
region	  —	  no	  fusion	  of	  the	  data	  (measurements	  or	  tracks)	  
from	  the	  mul6ple	  sensors	  is	  done.	  	  

•  As	  targets	  move	  from	  one	  sector	  to	  another,	  they	  are	  
handed	  over	  –	  handoff	  –	  in	  a	  manner	  that	  depends	  on	  
the	  system.	  Generally,	  the	  mechanism	  is	  to	  assign	  
responsibility	  to	  the	  sensor	  with	  the	  highest	  expected	  
accuracy,	  although	  workload	  and	  communica6on	  
constraints	  can	  also	  play	  a	  role.	  	  

Type	  I	  Configura6on	  
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•  Each	  sensor	  maintains	  its	  own	  (distributed)	  track.	  
–  this	  is	  oNen	  the	  preferred	  solu6on	  
–  solu6on	  is	  robust	  to	  failure	  and	  rela6vely	  light	  in	  its	  
communica6on	  requirements	  

•  Issues:	  	  
–  sensor	  registra6on	  &	  bias	  
–  track-‐to-‐track	  associa6on	  (T2TF)	  
–  correla6on	  between	  distributed	  tracks?	  
–  fused	  covariance?	  	  

Type	  II	  Configura6on	  
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•  Synthe6c	  example	  of	  
detec6ons	  to	  be	  fused.	  
–  Covariances	  are	  random,	  	  
–  Pd	  =	  50%,	  25	  sensors,	  λ	  =	  5.	  
–  There	  are	  four	  “true”	  targets	  

illustrated	  by	  magenta	  stars.	  	  

•  This	  is	  not	  tradi6onal	  pre-‐
detec6on	  fusion!	  	  
–  The	  detec6ons	  must	  be	  

clustered	  before	  being	  fused.	  

Type	  III	  Configura6on	  
Issues in Target Tracking & Data Fusion

Some Fusion Issues

Fusion Architectures

Type III Configuration: Pre-Detection Fusion

−1.5 −1 −0.5 0 0.5 1 1.5
x 105

−1.5

−1

−0.5

0

0.5

1

1.5
x 105

Synthetic example of
detections to be fused.
Covariances are random,
Pd = 50%, 25 sensors,
� = 5. There are four
“true” targets illustrated by
magenta stars.

This is not traditional
pre-detection fusion!

Peter Willett Issues in Target Tracking & Data Fusion
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•  Completely	  centralized	  associa6on	  and	  tracking.	  For	  realis6c	  
mul6-‐sensor	  processing	  must	  allow	  for	  out-‐of-‐sequence	  
measurements	  (OOSMs).	  	  
–  can	  happen	  because	  plots	  arrive	  via	  network,	  perhaps	  datagram	  

rou6ng	  
–  op6mally:	  recompute	  en6re	  solu6on	  when	  OOSM	  arrives	  –	  avoid	  this!	  
–  exact	  single-‐gain	  “corrector”	  solu6on	  for	  single-‐lag	  case	  [Bar-‐Shalom]	  

approximate	  single-‐gain	  “corrector”	  solu6on	  for	  mul6-‐lag	  case	  [Bar-‐
Shalom,	  Mallick,	  others]	  	  

–  exact	  mul6-‐lag	  solu6on	  based	  on	  “accumulated	  state	  density”	  [Koch	  &	  
Govaers]	  	  

•  Sensors	  need	  not	  (and	  should	  not	  be	  assumed	  to)	  be	  
synchronized.	  	  

Type	  IV	  Configura6on	  
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Theore6cal	  Mul6-‐sensor	  Fusion	  

no fusion 
of 
sensors	


Fusion of multiple sensors	


Performance	


Interesting Parameter	

(from Fred Daum, with permission) 
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Real	  World	  Mul6-‐sensor	  Fusion	  

fusion of sensors	


no fusion of sensors	


Performance	


Interesting Parameter	

(from Fred Daum, with permission) 
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Theore6cal	  Mul6-‐sensor	  Fusion	  

Fusion of	

 tracks	


Fusion of measurements	


Performance	


Interesting Parameter	

(from Fred Daum, with permission) 
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Real	  World	  Mul6-‐sensor	  Fusion	  
	  Performance	


Interesting Parameter	


Fusion of measurements	


Fusion of tracks	


(from Fred Daum, with permission) 
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	  Key	  Real	  World	  Issues	  for	  Fusion	  
•  residual	  bias	  between	  sensors	  
•  targets	  detected	  by	  sensor	  A	  are	  not	  always	  the	  same	  as	  the	  

targets	  detected	  by	  sensor	  B	  
•  targets	  resolved	  by	  sensor	  A	  are	  not	  always	  the	  same	  as	  the	  

targets	  resolved	  by	  sensor	  B	  
•  targets	  tracked	  by	  sensor	  A	  are	  not	  always	  the	  same	  as	  the	  

targets	  tracked	  by	  sensor	  B	  
•  not	  all	  relevant	  data	  or	  tracks	  are	  reported	  by	  all	  data	  links	  
•  inconsistent	  covariance	  matrices	  (of	  data	  or	  tracks)	  from	  

sensors	  

(from Fred Daum, with permission) 
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Track	  Associa6on	  vs.	  Bias	  
sensor a 
sensor b 

sensor a 
sensor b 

Bias MOU 
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•  The	  goal	  is	  to	  minimize	  the	  
“cost”	  such	  that	  no	  target	  
gets	  assigned	  twice.	  

•  For	  two	  sensors	  the	  
problem	  is	  rela6vely	  easy	  
and	  there	  exist	  polynomial-‐
6me	  algorithms	  for	  it.	  
–  we’ll	  look	  at	  this	  

•  For	  more	  than	  two	  sensors	  
the	  problem	  is	  NP-‐hard	  
–  relaxa6on	  

T2T	  Associa6on	  (MOU)	  
sensor a 
sensor b 

Costs 
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(etc.) T2T Assignment Costs 
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Sensor 2 

Sensor 2 
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or
 1 
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ns

or
 1 
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70	   65	   95	   75	  

75	  	   16	   34	  	   25	  

27	   11	   58	   50	  

67	   49	   22	   69	  

Criterion Matrix 

0	   0	   0	   0	  

1	   0	   0	   0	  

0	   0	   0	   0	  

0	   0	   0	   0	  

Assignment Matrix 

Prices 

0	  

5	  

0	  

0	  

Turns out to be 
second target. 
Repeat for second 
sensor-2 track. 

Sensor 2 

Sensor 2 

Se
ns

or
 1 

Se
ns

or
 1 
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70	   65	   95	   75	  

75	  	   16	   34	  	   25	  

27	   11	   58	   50	  

67	   49	   22	   69	  

Criterion Matrix 

0	   1	   0	   0	  

1	   0	   0	   0	  

0	   0	   0	   0	  

0	   0	   0	   0	  

Assignment Matrix 

Prices 

16	  

5	  

0	  

0	  

Turns out to be 
second sensor-1 
track. Repeat for 
second sensor-2 
track, which takes the 
first sensor-1 track. 

Sensor 2 

Sensor 2 

Se
ns

or
 1 

Se
ns

or
 1 
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Sensor 2 

70	   65	   95	   75	  

75	  	   16	   34	  	   25	  

27	   11	   58	   50	  

67	   49	   22	   69	  

Criterion Matrix 

Sensor 2 

0	   0	   1	   0	  

1	   0	   0	   0	  

0	   0	   0	   0	  

0	   0	   0	   0	  

Assignment Matrix 

Prices 

37	  

5	  

0	  

0	  

Turns the third 
sensor-2 track 
likes the first 
target-1 track 
more than the 
second target-2 
track does. 

Se
ns

or
 1 

Se
ns

or
 1 
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70	   65	   95	   75	  

75	  	   16	   34	  	   25	  

27	   11	   58	   50	  

67	   49	   22	   69	  

Criterion Matrix 

0	   0	   1	   0	  

1	   0	   0	   0	  

0	   0	   0	   0	  

0	   1	   0	   0	  

Assignment Matrix 

Prices 

37	  

5	  

0	  

21	  

The second target-2 
track has most gain 
possible, so back to 
that one. It turns out 
to like the 4th target-1 
track the most. Note 
that price is now 
21=49-(65-37). 

Sensor 2 

Sensor 2 

Se
ns

or
 1 

Se
ns

or
 1 
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70	   65	   95	   75	  

75	  	   16	   34	  	   25	  

27	   11	   58	   50	  

67	   49	   22	   69	  

Criterion Matrix 

0	   0	   1	   0	  

1	   0	   0	   0	  

0	   0	   0	   1	  

0	   1	   0	   0	  

Assignment Matrix 

Prices 

37	  

5	  

2	  

21	  

The 4th target-2 track 
gets assigned to the 
3rd target-1 track. 
Price is 2=50-(69-21). 

Sensor 2 

Sensor 2 

Se
ns

or
 1 

Se
ns

or
 1 
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•  There	  can	  be	  biases	  in	  range,	  6me	  –	  all	  kinds	  of	  things	  –	  
but	  most	  oNen	  they	  come	  to	  the	  fore	  in	  angle-‐only	  
sensing.	  

•  Consider	  (the	  important)	  applica6on	  of	  mul6-‐sensor	  
tracking	  of	  threats	  from	  mul6ple	  satellites.	  
–  Biases	  here	  are	  roll	  (φ),	  pitch	  (ρ)	  and	  yaw	  (ψ).	  

•  These	  can	  be	  es6mated	  by	  using	  targets	  of	  opportunity	  
or	  mul6ple	  frames	  of	  data.	  

•  There	  are	  3×Nsensor	  biases	  and	  3×Ntarget	  target	  parameters	  
to	  es6mate,	  and	  2×Nsensor	  ×Ntarget	  observa6ons.	  
–  For	  2	  sensors	  we	  would	  need	  at	  least	  6	  targets.	  

Bias:	  Example	  FPA	  Sensors	  
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Introduction Problem Formulation Simulations Simulations Summary

Description of the Scenarios (cont.)

Figure 3: Target and satellite trajectories

Belfadel, Bar-Shalom, and Willett Target State and Bias Estimation 16 / 18

Example	  of	  Bias	  Es6ma6on	  

Introduction Problem Formulation Simulations Simulations Summary

Description of the Scenarios (cont.)

The target modeled represents a long range ballistic missile with a
flight time of about 20 minutes.
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Figure 2: Target and satellite trajectories

Belfadel, Bar-Shalom, and Willett Target State and Bias Estimation 15 / 18

Introduction Problem Formulation Simulations Simulations Summary

Sample Average Target Position RMSE

The first estimation scheme was established as a baseline using
bias-free LOS measurements to estimate the target positions.

For the second scheme, we used biased LOS measurements but
without bias estimation.

In the last scheme, we used biased LOS measurements and we
simultaneously estimated the target positions and sensor biases.

Table 2: Sample average RMSE (m) for the target position and velocity, over 100 Monte
Carlo runs, for the 3 estimation schemes.

Scheme Position RMSE Velocity RMSE

1 107.44 5.16
2 47,161.10 25,149.32
3 494.49 19.55

Belfadel, Bar-Shalom, and Willett Target State and Bias Estimation 17 / 18

Scheme 1: No bias. 
Scheme 2: Ignore bias. 
Scheme 3: Estimate bias. 

•  For multi-frame single-target data there are 3×Nsensor biases and 6 target 
parameters to estimate (velocities!), and 2×Nsensor ×Nframe observations. 

•  For 2 sensors we would need at least 3 frames. 
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•  A	  tradi6onal	  target	  evolves	  according	  to	  a	  Markov	  model	  	  
–  means	  that	  p(x(t)|x(t	  −	  1),x(t	  −	  2),...)	  =	  p(x(t)|x(t	  −	  1)).	  	  
–  usual	  model	  is	  x(t)	  =	  f(x(t	  −	  1),	  ν(t))	  where	  f	  is	  some	  func6on	  and	  
ν	  is	  noise.	  	  

•  The	  observa6on	  is	  occluded:	  	  
–  roiled	  by	  noise	  
–  missed	  detec6ons	  
–  false	  alarms	  
–  mul6ple	  targets	  	  

•  That	  is:	  a	  “hidden”	  Markov	  model	  (HMM).	  
•  Can	  we	  apply	  our	  target	  tracking	  knowledge	  /	  exper6se	  

to	  other	  non-‐tradi6onal	  models?	  	  

“Hard”	  Tools	  for	  a	  “SoN”	  Problem	  
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X(t-1) X(t) X(t+1) X(t+2) 

Z(t-1) Z(t) Z(t+1) Z(t+2) 

state evolves according to Markov model 

observation at time t depends only on state at time t 
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•  Let’s	  try	  to	  model	  some	  nefarious	  plot	  
•  Time	  model	  	  

–  carrying	  out	  an	  a,ack	  requires	  planning	  
–  steps	  of	  the	  plan	  form	  a	  pa,ern	  
–  pa,ern	  of	  ac6ons	  can	  be	  modeled	  using	  a	  Markov	  chain	  

•  Observa6on	  model	  	  
–  terrorists	  leave	  detectable	  clues	  about	  enabling	  events	  
–  clues	  are	  not	  direct	  observa6ons,	  but	  are	  related	  to	  them	  
–  the	  states	  in	  the	  Markov	  chain	  are	  hidden.	  

•  Clu,er	  
–  refers	  to	  false	  /	  irrelevant	  /	  spurious	  observa6ons	  
–  example:	  someone	  has	  bought	  fer6lizer	  
–  fer6lizer	  bomb?	  
–  actual	  interest	  in	  farming?	  	  
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Transactions are necessary in order for “plan” to evolve:  

Underlying the observation stream, a puzzle is  
being fit together.  
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Data Association
Modeling

Data Association and Tracking Solutions
Detectability Analysis

HMM with clutter and missed detections
Examples

HMM example: Truck bombing

S1

S2

S3

S4

S5 S6

S7

S8 S9

• S1: Selection of targets and reconnaissance

• S2: Set up cell A1

• S3: Set up cell A

• S4: Acquire money for operation

• S5: Gather resources

• S6: Expert arrives to assemble bombs

• S7: Target reconnaissance

• S8: Communications and final setup

• S9: Attack

This is based only on imagination and publicly available information:
S. Singh, H. Tu, J. Allanach, J. Areta, P. Willett, and K. Pattipati, “Modeling threats,” IEEE Potentials, 2004.

14/71

Truck bombing example: Really, too simple. 
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Graph evolves probabilistically from one state to the next:  

HMM’s observations are new elements being added 
to network.  

Data Association
Modeling

Data Association and Tracking Solutions
Detectability Analysis

HMM with clutter and missed detections
Examples

HMM and Data Association Modeling

Graph evolves probabilistically from one state to the next:

HMM’s observations are new elements being added to network.
13/71
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time 

Activity 1 Activity 1 Activity 1 Activity 2 Activity 2 

Clutter Clutter Clutter 

•  The observation stream (transactions) is from a (logical) OR-ing of component 
parts from several “targets” of interest and clutter. 

•  We seek a multi-target tracker that is appropriate for the job. 
•  We have developed a multi-Bernoulli filter (MBF) to extract it. 
•  We have begun to analyze “detectability.” 
•  In the future we will extend it to multiple activities and features. 

- Granstrom, Willett & Bar-Shalom, “Asymmetric Threat Modeling Using HMMs: Bernoulli Filtering and Detectability 
Analysis,” TSP 2016. 
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Data Association
Modeling

Data Association and Tracking Solutions
Detectability Analysis

Why?
Probability of HMM Detection Via Normal Approximation
False-Alarm Rate via Chernoff
What If?

Results: Detectability vs. Complexity
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Detection rate (D) at
10% false alarm rate
(FA) for daisy chain
HMMs with probability
of state transition PT ,
and number of states
NS . Each of the 12
subfigures shows the
D rate as a function of
the probability of HMM
observation PD and
the probability of
clutter observation PFA.
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20 states 30 states 40 states 50 states 

Detec6on	  rate	  (D)	  at	  
10%	  false	  alarm	  rate	  
(FA)	  for	  daisy	  chain	  
HMMs	  with	  
probability	  of	  state	  
transi6on	  PT	  ,	  and	  
number	  of	  states	  N.	  

Detectability vs. Complexity & Speed 
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•  Mul6-‐User	  Informa6on	  Theory	  
–  typicality:	  entropy	  &	  capacity	  
–  MAC,	  broadcast,	  CEO	  problem	  

•  Case	  studies	  
–  scan	  sta6s6cs	  for	  sensor	  networks	  
–  consensus	  in	  sensor	  networks	  
–  data	  fusion	  with	  intermi,ent	  detec6ons	  
–  quan6zed	  es6ma6on:	  a	  note	  
–  decentralized	  learning	  
–  decentralized	  es6ma6on	  with	  MOU	  

•  Data	  Fusion	  for	  Tracking	  
–  architectures	  
–  bias	  
–  track	  fusion	  

•  Example	  of	  Applica6on	  of	  Hard	  Methods	  to	  a	  SoN	  Problem	  

Summary	  
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